

THE MORSE-BOTT INEQUALITIES VIA DYNAMICAL SYSTEMS: ERRATUM CONCERNING THE ORIENTATION ASSUMPTIONS

AUGUSTIN BANYAGA AND DAVID E. HURTUBISE

Correction

The statement of Theorem 8 (Morse-Bott inequalities) in the paper says, "...assume that all of the critical submanifolds of f are orientable." This should be corrected to, "...assume that all of the negative normal bundles of the critical submanifolds of f are orientable."

Discussion

If $f : M \rightarrow \mathbb{R}$ is a Morse-Bott function, then the tangent bundle of M along a critical submanifold $C \subseteq M$ splits as

$$T_*M = T_*C \oplus \nu_*^-C \oplus \nu_*^+C$$

(see Lemma 5 of the paper), where ν_*^-C is the negative normal bundle of C . In the paper it is assumed that M is orientable in order to simplify the exposition. However, even if T_*M is orientable, the assumption that T_*C is orientable is different from the assumption that ν_*^-C is orientable, unless ν_*^+C is orientable.

The corrected orientation assumption is needed in the proof of Lemma 9 of the paper. In the statement of that lemma, the phrase " C_j is orientable" should be corrected to " $\nu_*^-C_j$ is orientable".

Acknowledgments

We would like to thank Thomas Rot for pointing out the mistake in the orientation assumptions printed in the paper and providing a nice counterexample of a Morse-Bott function on \mathbb{RP}^5 with two isolated critical points and a critical submanifold diffeomorphic to \mathbb{RP}^3 .

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY, UNIVERSITY PARK, PA 16802
E-mail address: banyaga@math.psu.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, PENN STATE ALTOONA, ALTOONA, PA 16601-3760
E-mail address: Hurtubise@psu.edu