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Abstract. Let f : M → R be a Morse-Bott function on a finite dimensional
closed smooth manifold M . Choosing an appropriate Riemannian metric on M

and Morse-Smale functions fj : Cj → R on the critical submanifolds Cj, one can
construct a Morse chain complex whose boundary operator is defined by counting
cascades [16]. Similar data, which also includes a parameter ε > 0 that scales the
Morse-Smale functions fj, can be used to define an explicit perturbation of the
Morse-Bott function f to a Morse-Smale function hε : M → R [3] [6]. In this paper
we show that the Morse-Smale-Witten chain complex of hε is the same as the Morse
chain complex defined using cascades for any ε > 0 sufficiently small. That is, the
two chain complexes have the same generators, and their boundary operators are
the same (up to a choice of sign). Thus, the Morse Homology Theorem implies
that the homology of the cascade chain complex of f : M → R is isomorphic to the
singular homology H∗(M ; Z).

1. Introduction

Let f : M → R be a Morse-Bott function on a finite dimensional closed smooth
Riemannian manifold (M, g) with connected critical submanifolds Cj for j = 1, . . . , l.
There are at least three approaches to computing the homology of M using moduli
spaces of gradient flow lines:

(1) Perturb f : M → R to a Morse-Smale function and use the Morse-Smale-
Witten chain complex, whose boundary operator is defined using moduli
spaces of gradient flow lines of the perturbed function (see for instance [4],
[29], and the references therein).

(2) Introduce Morse functions fj : Cj → R on the critical submanifolds C1, . . . , Cl

and use a Morse chain complex whose boundary operator is defined using
moduli spaces of cascades [16].

(3) Use the Morse-Bott-Smale multicomplex, where the homomorphisms in the
multicomplex are defined using fibered products of moduli spaces of gradient
flow lines of the Morse-Bott function f : M → R [7].

A fourth approach might involve using the filtration determined by the Morse-Bott
function f : M → R to define a spectral sequence, but the differentials in the spectral
sequence determined by the filtration are not defined using moduli spaces of gradient

2010 Mathematics Subject Classification. Primary: 57R70 Secondary: 37D05 37D15 58E05.
1



2 AUGUSTIN BANYAGA AND DAVID E. HURTUBISE

flow lines (see [7] and [19]). In addition, there are approaches to computing the coho-
mology/homology of M from a Morse-Bott function using differential forms and/or
currents [3] [12] [22], but we will not discuss differential forms or currents in this
paper.

The main goal of this paper is to show that for a finite dimensional closed smooth
manifold M the first two approaches are essentially the same. That is, the auxiliary
Morse functions fj : Cj → R on the critical submanifolds Cj for j = 1, . . . , l required
to define the cascade chain complex and a parameter ε > 0 determine an explicit
perturbation of the Morse-Bott function f : M → R to a Morse function hε : M → R

[3] [6]. Moreover, under certain transversality assumptions the Morse-Smale-Witten
chain complex of hε : M → R has the same generators and the same boundary
operator as the cascade chain complex (up to a choice of sign).

We now describe the cascade chain complex for a Morse-Bott function. To the best
of our knowledge, moduli spaces of cascades were first introduced within the context
of symplectic Floer homology by Frauenfelder [16], and cascade-like objects were
simultaneously introduced within the context of contact homology by Bourgeois [11].
Moduli spaces of cascades have since been used in the contexts of contact homology
and gauge theory by several authors [9] [10] [13] [30]. Our approach to constructing
moduli spaces of cascades and their compactifications is given in Sections 3 and
4 for a function f : M → R on a finite dimensional closed smooth Riemannian
manifold (M, g) that satisfies the Morse-Bott-Smale transversality condition. The
moduli spaces of cascades are constructed using finite dimensional fibered products
similar to those found in [7], and the compactifications of the moduli spaces are
described in terms of the Hausdorff topology.

Cascades. Let f : M → R be a Morse-Bott function on a finite dimensional closed
smooth Riemannian manifold (M, g) with connected critical submanifolds C1, . . . , Cl.
Choose Morse-Smale functions fj : Cj → R on the critical submanifolds for all
j = 1, . . . , l, and define the total index of a critical point of fj to be its Morse index
on Cj plus the Morse-Bott index of the critical submanifold Cj. Roughly speaking,
a cascade between two critical points is a concatenation of some gradient flow lines
of the function f and pieces of the gradient flow lines of the functions fj on the crit-
ical submanifolds. Choosing appropriate Riemannian metrics on M and the critical
submanifolds Cj it is shown in the appendix to [16] that the moduli space of cas-
cades Mc(q, p) between two critical points q and p is a smooth manifold of dimension
λq−λp−1, where λq and λp denote the total indices of q and p respectively. Moreover,
Mc(q, p) has a compactification consisting of broken flow lines with cascades between
q and p.

Since the moduli space of cascades Mc(q, p) has properties similar to those of a
moduli space of gradient flow lines of a Morse-Smale function, it is natural to define a
chain complex analogous to the Morse-Smale-Witten chain complex but using moduli
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spaces of cascades in place of moduli spaces of gradient flow lines. Thus, we define the
kth chain group Cc

k(f) to be the free abelian group generated by the critical points of
total index k of the Morse-Smale functions fj for all j = 1, . . . , l. In the appendix to
[16] a boundary operator ∂c

∗ is defined by counting the number of cascades between
critical points of relative index one mod 2, and a continuation theorem is stated that
implies that the homology of the chain complex (Cc

∗(f)⊗Z2, ∂
c
∗) is isomorphic to the

singular homology H∗(M ; Z2). In Section 5 of this paper we show that it is possible
to define the boundary operator ∂c

∗ over Z by counting the elements of Mc(q, p) with
sign when λq−λp = 1, and we prove that the homology of the resulting chain complex
(Cc

∗(f), ∂c
∗) is isomorphic to the singular homology H∗(M ; Z).

Perturbing the Morse-Bott function. The Morse-Smale functions fj : Cj → R

chosen to define the chain complex (Cc
∗(f), ∂c

∗) can also be used to define an explicit
perturbation of the Morse-Bott function f : M → R to a Morse-Smale function
hε : M → R. This perturbation technique was used in [3] in relation to a de Rham
version of Morse-Bott cohomology. It was also used in [6] to give a dynamical systems
approach to the proof of the Morse-Bott inequalities with somewhat different orienta-
tion assumptions than the classical “half-space” method using the Thom Isomorphism
Theorem (see [8], Appendix C of [15], and Section 2.6 of [25]).

To define the Morse-Smale function hε : M → R near f choose “small” tubular
neighborhoods Tj of each of the critical submanifolds Cj for all j = 1, . . . , l and
extend the Morse-Smale functions fj to the tubular neighborhoods Tj by making them
constant in the direction normal to Cj . Choose bump functions ρj on the tubular
neighborhoods Tj for all j = 1, . . . , l that are equal to one in an open neighborhood
of Cj, constant in the direction parallel to Cj, and equal to zero outside of Tj. The
function

hε = f + ε

(

l
∑

j=1

ρjfj

)

is a Morse function near f for any sufficiently small ε > 0, and the critical set of hε is
the union of the critical points of the functions fj : Cj → R for j = 1, . . . , l. In fact,
the total index λq of a critical point q is the same as the Morse index of q viewed as
a critical point of hε : M → R.

Correspondence. If we choose the Riemannian metric g on M so that hε : M → R

satisfies the Morse-Smale transversality condition with respect to g, then the moduli
space of gradient flow lines of hε between two critical points q and p is a smooth
manifold with dim Mhε(q, p) = λq − λp − 1. We show in Section 3 that if f :
M → R satisfies the Morse-Bott-Smale transversality condition and we choose the
Morse functions fj on the critical submanifolds so that some additional transversality
conditions are satisfied, then the moduli space of cascades Mc(q, p) is also a smooth
manifold of dimension λq − λp − 1.
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In Section 5 we prove that when the dimension of these moduli spaces is zero they
have the same number of elements.

Theorem 1 (Correspondence of Moduli Spaces). Let p, q ∈ Cr(hε) with λq −λp = 1.
For any sufficiently small ε > 0 there is a bijection between unparameterized cascades
and unparameterized gradient flow lines of the Morse-Smale function hε : M → R

between q and p,
Mc(q, p) ↔ Mhε(q, p).

Choosing orientations on the unstable manifolds of the Morse-Smale function hε :
M → R associates a sign ±1 to each component of Mhε(q, p) when λq − λp = 1, and
thus we can use the correspondence theorem for moduli spaces to transport the signs
to the components of Mc(q, p). This allows us to define the boundary operator in the
cascade chain complex over Z, and we have the following as an immediate corollary.

Corollary 2 (Correspondence of Chain Complexes). For ε > 0 sufficiently small, the
Morse-Smale-Witten chain complex (C∗(hε), ∂∗) associated to the perturbation

hε = f + ε

(

l
∑

j=1

ρjfj

)

of a Morse-Bott function f : M → R is the same as the cascade chain complex
(Cc

∗(f), ∂c
∗). That is, the chain groups of both complexes have the same generators

and their boundary operators are the same (up to a choice of sign).

This corollary, together with the Morse Homology Theorem, implies immediately that
the homology of the chain complex (Cc

∗(f), ∂c
∗) is isomorphic to the singular homology

H∗(M ; Z).

Outline of the paper. In Section 2 we recall some basic definitions and facts about
the Morse-Smale-Witten chain complex. In Section 3 we give a detailed construction
of the smooth moduli space of cascades Mc(q, p) under the assumption that f :
M → R satisfies the Morse-Bott-Smale transversality condition with respect to the
metric g on M . Our construction requires that the Morse functions fj : Cj →
R satisfy the Morse-Smale transversality condition with respect to the restriction
of the Riemannian metric g to the critical submanifolds for all j = 1, . . . , l and
that all the unstable and stable manifolds on the critical submanifolds are transverse
to certain beginning and endpoint maps (Definition 11). Lemma 12 shows that it
is always possible to choose the auxiliary Morse functions fj : M → R so that
these transversality conditions are satisfied. Theorem 13 shows that under the above
assumptions Mc(q, p) is a smooth manifold of dimension λq −λp − 1 that is stratified
by smooth manifolds with corners.

In Section 4 we study the compactness properties of Mc(q, p). We show using
the Hausdorff metric that Mc(q, p) can be compactified using broken flow lines with
cascades, which implies that Mc(q, p) is compact when λq − λp = 1. In Section 5
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we give a detailed construction of the perturbation hε : M → R, and we prove that
it is possible to choose a single Riemannian metric g so that hε : M → R satisfies
the Morse-Smale transversality condition with respect to g for all ε > 0 sufficiently
small (Lemma 22). We also prove that as ε → 0 a sequence of gradient flow lines of
hε between two critical points q and p must have a subsequence that converges to a
broken flow line with cascades from q to p (Lemma 24).

The correspondence theorem for moduli spaces (Theorem 25) is proved in Section
5 using recent results from geometric singular perturbation theory. In particular,
our proof uses the Exchange Lemma for fast-slow systems [20] [27] [28] which says
(roughly) that a manifold M0 that is transverse to the stable manifold of a normally
hyperbolic locally invariant submanifold C will have subsets that flow forward in time
under the full fast-slow system to be near subsets of the unstable manifold of C . The
correspondence theorem for the Morse-Smale-Witten chain complex of hε : M → R

and the cascade chain complex (Corollary 28) follows as an immediate corollary to
the correspondence theorem for moduli spaces.

2. The Morse-Smale-Witten chain complex

In this section we briefly recall the construction of the Morse-Smale-Witten chain
complex and the Morse Homology Theorem. For more details see [4].

Let Cr(f) = {p ∈M | dfp = 0} denote the set of critical points of a smooth function
f : M → R on a smooth m-dimensional manifold M . A critical point p ∈ Cr(f) is
said to be nondegenerate if and only if the Hessian Hp(f) is nondegenerate. The
index λp of a nondegenerate critical point p is the dimension of the subspace of TpM
where Hp(f) is negative definite. If all the critical points of f are non-degenerate,
then f is called a Morse function.

If f : M → R is a Morse function on a finite dimensional compact smooth Riemann-
ian manifold (M, g), then the stable manifold W s

f (p) and the unstable manifold

W u
f (p) of a critical point p ∈ Cr(f) are defined to be

W s
f (p) = {x ∈M | lim

t→∞
ϕt(x) = p}

W u
f (p) = {x ∈M | lim

t→−∞
ϕt(x) = p}

where ϕt is the 1-parameter group of diffeomorphisms generated by minus the gradient
vector field, i.e. −∇f . The index of p coincides with the dimension of W u

f (p). The
Stable/Unstable Manifold Theorem for a Morse Function says that the tangent space
at p splits as

TpM = T s
pM ⊕ T u

pM

where the Hessian is positive definite on T s
pM

def
= TpW

s
f (p) and negative definite on

T u
p M

def
= TpW

u
f (p). Moreover, the stable and unstable manifolds of p are surjective
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images of smooth embeddings

Es : T s
pM → W s

f (p) ⊆M

Eu : T u
p M → W u

f (p) ⊆M.

Hence, W s
f (p) is a smoothly embedded open disk of dimension m− λp, and W u

f (p) is
a smoothly embedded open disk of dimension λp.

If the stable and unstable manifolds of a Morse function f : M → R all intersect
transversally, then the function f is called Morse-Smale. For any metric g on M the
set of smooth Morse-Smale functions is dense by the Kupka-Smale Theorem (Theorem
6.6 and Remark 6.7 of [4]), and for a given Morse function f : M → R one can choose
a Riemannian metric on M so that f is Morse-Smale with respect to the chosen
metric (Theorem 2.20 of [1]). Moreover, if f is Morse-Smale and p, q ∈ Cr(f) then
Wf (q, p) = W u

f (q) ∩W s
f (p) is an embedded submanifold of M of dimension λq − λp,

and when λq−λp = 1 the number of gradient flow lines from q to p is finite (Corollary
6.29 of [4]).

If we choose an orientation for each of the unstable manifolds of f , then there is
an induced orientation on the normal bundles of the stable manifolds. Thus, we can
define an integer associated to any two critical points p and q of relative index one
by counting the number of gradient flow lines from q to p with signs determined by
the orientations. This integer is denoted by nf (q, p) = #Mf(q, p), where Mf (q, p) =
Wf (q, p)/R is the moduli space of gradient flow lines of f from q to p. The Morse-

Smale-Witten chain complex is defined to be the chain complex (C∗(f), ∂∗) where
Ck(f) is the free abelian group generated by the critical points q of index k and the
boundary operator ∂k : Ck(f) → Ck−1(f) is given by

∂k(q) =
∑

p∈Crk−1(f)

nf (q, p)p

where Crk−1(f) denotes the set of critical points with index k − 1.

Theorem 3 (Morse Homology Theorem). The pair (C∗(f), ∂∗) is a chain complex,
and the homology of (C∗(f), ∂∗) is isomorphic to the singular homology H∗(M ; Z).

Note that the Morse Homology Theorem implies that the homology of (C∗(f), ∂∗) is
independent of the Morse-Smale function f : M → R, the Riemannian metric, and
the chosen orientations.

3. Morse-Bott functions and cascades

Let f : M → R be a smooth function whose critical set Cr(f) contains a subman-
ifold C of positive dimension. Pick a Riemannian metric on M and use it to split
T∗M |C as

T∗M |C = T∗C ⊕ ν∗C
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where T∗C is the tangent space of C and ν∗C is the normal bundle of C . Let p ∈ C ,
V ∈ TpC , W ∈ TpM , and let Hp(f) be the Hessian of f at p. We have

Hp(f)(V,W ) = Vp · (W̃ · f) = 0

since Vp ∈ TpC and any extension of W to a vector field W̃ satisfies df(W̃ )|C = 0.
Therefore, the Hessian Hp(f) induces a symmetric bilinear form Hν

p (f) on νpC .

Definition 4. A smooth function f : M → R on a smooth manifold M is called a
Morse-Bott function if and only if the set of critical points Cr(f) is a disjoint
union of connected submanifolds and for each connected submanifold C ⊆ Cr(f) the
bilinear form Hν

p (f) is non-degenerate for all p ∈ C.

Often one says that the Hessian of a Morse-Bott function f is non-degenerate in the
direction normal to the critical submanifolds.

For a proof of the following lemma see Section 3.5 of [4] or [5].

Lemma 5 (Morse-Bott Lemma). Let f : M → R be a Morse-Bott function and
C ⊆ Cr(f) a connected component. For any p ∈ C there is a local chart of M around
p and a local splitting ν∗C = ν−∗ C ⊕ ν+

∗ C, identifying a point x ∈M in its domain to
(u, v, w) where u ∈ C, v ∈ ν−∗ C, w ∈ ν+

∗ C, such that within this chart f assumes the
form

f(x) = f(u, v, w) = f(C) − |v|2 + |w|2.
Definition 6. Let f : M → R be a Morse-Bott function on a finite dimensional
smooth manifold M , and let C be a critical submanifold of f . For any p ∈ C let
λp denote the index of Hν

p (f). This integer is the dimension of ν−p C and is locally
constant by the preceding lemma. If C is connected, then λp is constant throughout C
and we call λp = λC the Morse-Bott index of C.

Cascades. Let f : M → R be a Morse-Bott function on a finite dimensional compact
smooth manifold, and let

Cr(f) =
l
∐

j=1

Cj,

where C1, . . . , Cl are disjoint connected critical submanifolds of Morse-Bott index
λ1, . . . , λl respectively. Let fj : Cj → R be a Morse function on the critical submani-
fold Cj for all j = 1, . . . , l. If q ∈ Cj is a critical point of fj : Cj → R, then we will
denote the Morse index of q relative to fj by λj

q, the stable manifold of q relative to
fj by W s

fj
(q) ⊆ Cj , and the unstable manifold of q relative to fj by W u

fj
(q) ⊆ Cj.

Definition 7. If q ∈ Cj is a critical point of the Morse function fj : Cj → R for
some j = 1, . . . , l, then the total index of q, denoted λq, is defined to be the sum of
the Morse-Bott index of Cj and the Morse index of q relative to fj, i.e.

λq = λj + λj
q .
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p

q

x t( )1

x t( )2

x t( )3

Cj

Ci

y t( )1

y t( )
2

Cj
1

Cj
2

y t( )1 1

y t( )2 2

y (0)1

y (0)2

n=3

The following is a restatement of Definition A.5 of [16].

Definition 8. For q ∈ Cr(fj), p ∈ Cr(fi), and n ∈ N, a flow line with n cascades

from q to p is a 2n − 1-tuple:

((xk)1≤k≤n, (tk)1≤k≤n−1)

where xk ∈ C∞(R,M) and tk ∈ R+ = {t ∈ R| t ≥ 0} satisfy the following for all k.

(1) Each xk is a non-constant gradient flow line of f , i.e.

d

dt
xk(t) = −(∇f)(xk(t)).

(2) For the first cascade x1(t) we have

lim
t→−∞

x1(t) ∈W u
fj

(q) ⊆ Cj,

and for the last cascade xn(t) we have

lim
t→∞

xn(t) ∈W s
fi
(p) ⊆ Ci.

(3) For 1 ≤ k ≤ n − 1 there are critical submanifolds Cjk
and gradient flow lines

yk ∈ C∞(R, Cjk
) of fjk

, i.e.

d

dt
yk(t) = −(∇fjk

)(yk(t)),

such that limt→∞ xk(t) = yk(0) and limt→−∞ xk+1(t) = yk(tk).

When j = i a flow line with zero cascades from q to p is a gradient flow line
of fj from q to p.
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Note: When j 6= i a flow line with cascades from q to p must have at least one
cascade.

Note: With respect to the notation in the preceding definition, we will say that the
flow line with n cascades ((xk)1≤k≤n, (tk)1≤k≤n−1) begins at q and ends at p if the
conditions listed in (2) hold, i.e.

lim
t→−∞

x1(t) ∈W u
fj

(q) ⊆ Cj,

and
lim
t→∞

xn(t) ∈W s
fi
(p) ⊆ Ci.

Note: In the preceding definition the parameterizations of the gradient flow lines yk(t)
of the Morse functions fjk

: Cjk
→ R are fixed in (3) by limt→∞ xk(t) = yk(0), and the

entry tk records the time spent flowing along the critical submanifold Cjk
(or resting

at a critical point). However, the parameterizations of the cascades x1(t), . . . , xn(t)
are not fixed. Hence, there is an action of R

n on a flow line with n cascades given by

((xk(t))1≤k≤n, (tk)1≤k≤n−1) 7→ ((xk(t+ sk))1≤k≤n, (tk)1≤k≤n−1)

for (s1, . . . , sn) ∈ R
n.

Definition 9. For q ∈ Cr(fj), p ∈ Cr(fi), and n ∈ N we denote the space of flow
lines from q to p with n cascades by W c

n(q, p), and we denote the quotient of W c
n(q, p)

by the action of R
n by

Mc
n(q, p) = W c

n(q, p)/Rn.

The set of unparameterized flow lines with cascades from q to p is defined
to be

Mc(q, p) =
⋃

n∈Z+

Mc
n(q, p)

where Mc
0(q, p) = W c

0 (q, p)/R. We will say that an element of Mc(q, p) begins at q
and ends at p.

We now prove that Mc(q, p) is a smooth manifold of dimension λq − λp − 1 when
f : M → R satisfies the Morse-Bott-Smale transversality condition with respect to
the metric g, the Morse functions fk : Ck → R satisfy the Morse-Smale transversality
condition with respect to the restriction of g to Ck for all k = 1, . . . , l, and the stable
and unstable manifolds of the Morse-Smale functions fi : Ci → R and fj : Cj → R are
transverse to certain beginning and endpoint maps. Our proof uses fibered product
constructions on smooth manifolds with corners similar to those found in [7].

Definition 10 (Morse-Bott-Smale Transversality). A Morse-Bott function f : M →
R is said to satisfy the Morse-Bott-Smale transversality condition with respect
to a given Riemannian metric g on M if and only if for any two connected critical
submanifolds C and C ′, W u

f (q) intersects W s
f (C ′) transversely in M , i.e. W u

f (q) t

W s
f (C ′) ⊆ M , for all q ∈ C.
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Let Ck and Ck′ be two connected critical submanifolds of f , and let W u
f (Ck) and

W s
f (Ck′) denote the unstable and stable manifolds of Ck and Ck′ with respect to

the flow of −∇f . The Morse-Bott-Smale transversality assumption implies that the
moduli space of gradient flow lines of f :

Mf (Ck, Ck′) =
(

W u
f (Ck) ∩W s

f (Ck′)
)

/R

is either empty or a smooth manifold of dimension λk−λk′+dim Ck−1. Moreover, the
beginning and endpoint maps ∂− : Mf (Ck, Ck′) → Ck and ∂+ : Mf(Ck, Ck′) → Ck′

are smooth, and the beginning point map ∂− is a submersion (see Lemma 5.19 of [7]).
Now assume that the following moduli spaces and fibered products are nonempty.

Then for distinct k, k′, k′′ ∈ {1, 2, . . . , l} and t ∈ R+ = {t ∈ R| t ≥ 0} we can consider
the fibered product

(R+ ×Mf (Ck, Ck′)) ×Ck′
Mf(Ck′ , Ck′′) //___

��
�

�

�

Mf(Ck′ , Ck′′)

∂−

��

R+ ×Mf(Ck, Ck′)
ϕt◦∂+◦π2

// Ck′

where π2 denotes projection onto the second component and ϕt denotes the gradient
flow of fk′ along the critical submanifold Ck′ for time t ∈ R+. This fibered product is
a smooth manifold with boundary because ∂− : Mf (Ck′, Ck′′) → Ck′ is a submersion,
and its dimension is

(λk − λk′ + dim Ck) + (λk′ − λk′′ + dim Ck′ − 1) − dim Ck′

= λk − λk′′ + dim Ck − 1

(see Lemma 4.5 and Lemma 5.21 of [7]). Similarly, for any set of distinct integers
{j1, j2, . . . , jn−1} ⊆ {1, 2, . . . , l} such that the following moduli spaces are nonempty,
the iterated fibered product

(R+ ×Mf (Cj, Cj1)) ×Cj1
(R+ ×Mf(Cj1 , Cj2)) ×Cj2

· · ·
×Cjn−2

(R+ ×Mf(Cjn−2
, Cjn−1

)) ×Cjn−1
Mf(Cjn−1

, Ci)

is a smooth manifold with corners because ∂− ◦ π2 : R+ × Mf (Ck, Ck′) → Ck is a
submersion and a stratum submersion for all k, k′ = 1, . . . , l. We will denote this
smooth manifold with corners by Mc

n(Cj, Cj1, . . . , Cjn−1
, Ci). Its dimension is

(λj − λj1 + dim Cj) + (λj1 − λj2 + dim Cj1) − dim Cj1 + · · ·
+ (λjn−2

− λjn−1
+ dim Cjn−2

) − dim Cjn−2
+ (λjn−1

− λi + dim Cjn−1
− 1)

− dim Cjn−1

= λj − λi + dim Cj − 1,
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which is independent of j1, j2, . . . , jn−1. Note that we have smooth beginning and
endpoint maps

∂− : Mc
n(Cj, Cj1 , . . . , Cjn−1

, Ci) → Cj

∂+ : Mc
n(Cj, Cj1, . . . , Cjn−1

, Ci) → Ci.

We can now state our transversality assumptions for the stable and unstable man-
ifolds W s

fi
(p) and W u

fj
(q) of the Morse-Smale functions fi : Ci → R and fj : Cj → R

with respect to these beginning and endpoint maps.

Definition 11. The stable and unstable manifolds W s
fi
(p) and W u

fj
(q) are trans-

verse to the beginning and endpoint maps if and only if for any set (possibly
empty) of distinct integers {j1, j2, . . . , jn−1} ⊆ {1, 2, . . . , l} such that the moduli space
Mc

n(Cj, Cj1 , . . . , Cjn−1
, Ci) is not empty the map

Mc
n(Cj, Cj1, . . . , Cjn−1

, Ci)
(∂−,∂+)−→ Cj × Ci

is transverse and stratum transverse to W u
fj

(q)×W s
fi
(p).

Note: When {j1, j2, . . . , jn−1} = ∅ we have Mc
1(Cj, Ci) = Mf(Cj, Ci).

Lemma 12. There exist arbitrarily small perturbations of fi : Ci → R and fj : Cj →
R to smooth Morse-Smale functions f̃i and f̃j such that all the stable and unstable

manifolds of f̃i and f̃j are transverse to the beginning and endpoint maps. More-

over, there exist open neighborhoods of f̃i and f̃j consisting of smooth Morse-Smale
functions whose stable and unstable manifolds are all transverse to the beginning and
endpoint maps.

Proof: Let {j1, j2, . . . , jn−1} ⊆ {1, 2, . . . , l} be a (possibly empty) set of distinct inte-
gers such that the moduli space Mc

n(Cj, Cj1, . . . , Cjn−1
, Ci) is not empty, and let X

be a stratum of Mc
n(Cj , Cj1, . . . , Cjn−1

, Ci). Let

Es
fi

: R
dim Ci−λi

p → W s
fi
(p) ⊆ Ci and Eu

fj
: R

λ
j
q → W u

fj
(q) ⊆ Cj

be the surjective smooth embeddings from Section 2, where p ∈ Cr(fi), q ∈ Cr(fj),

and we have identified T s
pCi = R

dim Ci−λi
p and T u

q Cj = R
λ

j
q. The stable and unstable

manifolds W s
fj

(p) and W u
fi

(q) are transverse to (∂−, ∂+) : X → Cj × Ci if and only if
the map

(Eu
fj
, Es

fi
) × (∂−, ∂+) : (Rλ

j
q × R

dim Ci−λi
p) ×X → (Cj × Ci) × (Cj × Ci)

is transverse to the diagonal ∆ ⊂ (Cj × Ci) × (Cj × Ci).
For any r ≥ 2 the set of Cr Morse-Smale functions on a smooth Riemannian

manifold (M, g) is an open and dense subset of the set of all Cr functions on M , and
the phase diagram of a Morse-Smale function is stable under small Cr perturbations
[26]. Thus, there exist a neighborhood Nfi

⊂ Cr(M,R) of fi such that f̃i ∈ Nfi
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implies that f̃i is a Morse-Smale function with critical points of the same index and
near the critical points of fi. Similarly, there exists a neighborhood Nfj

⊂ Cr(M,R)

of fj such that f̃j ∈ Nfj
implies that f̃j is a Morse-Smale function with critical points

of the same index and near the critical points of fi. Moreover, we can choose these
neighborhoods small enough so that the maps

Es : Nfi
→ Cr(Rdim Ci−λi

p, Ci) and Eu : Nfj
→ Cr(Rλ

j
q , Cj)

defined by sending f̃i ∈ Nfi
to the embedding Es

f̃i
(with respect to the critical point p̃

near p) and f̃j ∈ Nfj
to the embedding Eu

f̃j
(with respect to the critical point q̃ near q)

are well defined and of class Cr. In particular, we can choose the neighborhoods small

enough so that we can identify T s
p̃Ci = T s

pCi = R
dim Ci−λi

p and T u
q̃ Cj = T u

q Cj = R
λ

j
q .

The map

(Eu ×Es)× (∂−, ∂+) : (Nfj
×Nfi

)× (Rλ
j
q ×R

dim Ci−λi
p ×X) → (Cj ×Ci)× (Cj ×Ci)

defined by

((Eu × Es) × (∂−, ∂+))
(

(f̃j, f̃i) × (x, y, γ)
)

= (Eu

f̃j
(x), Es

f̃i
(y)) × (∂−(γ), ∂+(γ))

is of class Cr (see Theorem 12.3 of [2]) and transverse to ∆ ⊂ (Cj ×Ci)× (Cj ×Ci).
Hence, by the Transversality Density Theorem (Theorem 19.1 of [2]) the set of Morse-

Smale functions (f̃j, f̃i) ∈ Nfj
×Nfi

such that

(Eu

f̃j
, Es

f̃i
) × (∂−, ∂+) : (Rλ

j
q × R

dim Ci−λi
p) ×X → (Cj × Ci) × (Cj × Ci)

is transverse to ∆ is residual (and hence dense) in Nfj
×Nfi

for r ≥ 2 large enough,
e.g. r > 3 dim M .

Since there are only finitely many subsets {j1, j2, . . . , jn−1} ⊆ {1, 2, . . . , l}, finitely
many critical points of fi and fj, and finitely many strata X, we can intersect finitely
many such residual sets to obtain a residual (and hence dense) subset R ⊆ Nfj

×Nfi

such that

Mc
n(Cj, Cj1, . . . , Cjn−1

, Ci)
(∂−,∂+)−→ Cj × Ci

is transverse and stratum transverse to W u

f̃j
(q̃) ×W s

f̃i
(p̃) for all q̃ ∈ Cr(f̃j) and p̃ ∈

Cr(f̃i) whenever (f̃j, f̃i) ∈ R. Moreover, since the space of smooth Morse-Smale
functions onM is dense in the space of Cr Morse-Smale functions onM , the Openness
of Transversal Intersection Theorem (Theorem 18.2 of [2]) implies that we can find
open neighborhoods of smooth functions arbitrarily close to fj and fi consisting of

Morse-Smale functions f̃j and f̃i with (f̃j, f̃i) ∈ R.

2

Note: The critical points of fi and fj may not be preserved by the perturbations in
the preceding lemma. However, it is possible to choose the perturbations so that the
phase diagrams of fi and fj do not change [26]. In particular, the number of critical
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points of index k remains the same for all k = 1, . . . , m, which also follows from the
Rigidity Theorem 1.19 of [14].

The next theorem should be compared with Theorem A.12 from [16], whose proof
uses the modern infinite dimensional techniques of Floer homology. Theorem A.12 in
[16] is proved under the assumption that the Riemannian metric g on M is generic,
which is necessary to ensure that a certain Fredholm operator used in the proof of
the theorem is surjective.

Theorem 13. Assume that f satisfies the Morse-Bott-Smale transversality condition
with respect to the Riemannian metric g on M , fk : Ck → R satisfies the Morse-
Smale transversality condition with respect to the restriction of g to Ck for all k =
1, . . . , l, and the unstable and stable manifolds W u

fj
(q) and W s

fi
(p) are transverse to

the beginning and endpoint maps.

(1) When n = 0, 1 the set Mc
n(q, p) is either empty or a smooth manifold without

boundary.
(2) For n > 1 the set Mc

n(q, p) is either empty or a smooth manifold with corners.
(3) The set Mc(q, p) is either empty or a smooth manifold without boundary.

In each case the dimension of the manifold is λq −λp − 1. When M is orientable and
Ck is orientable for all k = 1, . . . , l, the above manifolds are orientable.

Proof: For more details concerning the notation and dimension formulas used in the
following we refer the reader to Sections 3 and 4 of [7]. We first prove statements (1)
and (2) using pullback constructions. A gluing theorem is then used to show that the
space Mc

≤n(Cj, Ci) consisting of flow lines with at most n cascades beginning at any
point in Cj and ending at any point in Ci is a manifold without boundary. Pulling
backW u

fj
(q)×W s

fi
(p) via the beginning and endpoint maps on Mc

≤l(Cj, Ci) then shows

that Mc(q, p) is a smooth manifold without boundary of dimension λq − λp − 1.

The space Mc
0(q, p) is empty unless i = j, and when i = j the theorem follows

from the fact that fj satisfies the Morse-Smale transversality condition. For the case
n = 1 note that the assumption that

Mc
1(Cj, Ci)

(∂−,∂+)−→ Cj × Ci

is transverse to W u
fj

(q)×W s
fi
(p) implies that

Mc
1(W

u
fj

(q),W s
fi
(p))

def
= (∂−, ∂+)−1(W u

fj
(q) ×W s

fi
(p))

is either empty or a smooth manifold. In the second case, the codimension of
the manifold Mc

1(W
u
fj

(q),W s
fi
(p)) is dim Cj − λj

q + λi
p, and hence the dimension of

Mc
1(W

u
fj

(q),W s
fi
(p)) is λj + λj

q − (λi + λi
p) − 1 since the dimension of Mc

1(Cj, Ci)

is λj − λi + dim Cj − 1. (See for instance Theorem 5.11 of [4].) This shows that
Mc

1(q, p) = Mc
1(W

u
fj

(q),W s
fi
(p)) is a smooth manifold without boundary of dimen-

sion λq − λp − 1.
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Now assume that n > 1 and the following moduli spaces and fibered products are
nonempty. Then for distinct j1, j2, . . . , jn−1 ∈ {1, 2, . . . , l} the assumption that

Mc
n(Cj, Cj1, . . . , Cjn−1

, Ci)
(∂−,∂+)−→ Cj × Ci

is transverse and stratum transverse to W u
fj

(q) ×W s
fi

(p) implies that

Mc
n(W u

fj
(q), Cj1, . . . , Cjn−1

,W s
fi
(p))

def
= (∂−, ∂+)−1(W u

fj
(q)×W s

fi
(p))

is a smooth manifold with corners of dimension λq − λp − 1. This shows that

Mc
n(q, p) =

⋃

{j1,...,jn−1}

Mc
n(W

u
fj

(q), Cj1, . . . , Cjn−1
,W s

fi
(p))

is a smooth manifold with corners of dimension λq −λp − 1, where the union is taken
over all sets of distinct integers {j1, . . . , jn−1} ⊆ {1, 2, . . . , l}. This completes the
proof of statements (1) and (2).

We now use a gluing theorem to define smooth charts on

Mc
≤n(Cj, Ci)

def
=

n
⋃

k=0

Mc
k(Cj, Ci)

where Mc
k(Cj, Ci) denotes the union of Mc

k(Cj, Cj1, . . . , Cjk−1
, Ci) over all sets of

distinct integers {j1, . . . , jk−1} ⊆ {1, 2, . . . , l} when k > 1. For distinct k, k′, k′′ ∈
{1, 2, . . . , l} there exists an ε > 0 and a smooth injective local diffeomorphism

G : Mf (Ck, Ck′) ×Ck′
Mf (Ck′, Ck′′) × (−ε, 0) → Mf(Ck, Ck′′)

onto an end of Mf (Ck, Ck′′), where the fibered product is taken with respect to the
beginning and endpoint maps ∂− and ∂+. (See for instance Appendix A.3 of [3] or
Theorem 4.8 of [7].) Let ρ : (−ε,∞) → (−ε,∞) be a smooth map that is smoothly
homotopic to

χ(t) =

{

t t ≥ 0
0 t ≤ 0

and satisfies

ρ(t) =

{

t t ≥ ε/2
0 t ≤ 0.

For ε > 0 sufficiently small we can replace the maps ϕt◦∂+ ◦π2 in the iterated fibered
product that defines Mc

n(Cj, Cj1 , . . . , Cjn−1
, Ci) with the maps ϕρ(t) ◦ ∂+ ◦ π2 and

obtain a smooth manifold with corners that is smoothly diffeomorphic to the original
manifold. Moreover, if we choose ε > 0 small enough, then W u

fj
(q) and W s

fi
(p) will

still be transverse to the beginning and endpoint maps from the modified fibered
product space.

Using the maps ϕρ(t) ◦ ∂+ ◦ π2 and ∂− we consider the fibered product

((−ε,∞)×Mf(Cj, Ck)) ×Ck
Mf(Ck, Ci)
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where k ∈ {1, 2, . . . , l}. The part of this smooth manifold where −ε < t < 0 is
diffeomorphic to an end of Mc

1(Cj, Ci) by the above gluing theorem, and the part of
the space where t ≥ 0 is diffeomorphic to Mc

2(Cj, Ck, Ci). Therefore, there are smooth
charts on the above manifold around the points where t = 0 which are compatible
with the smooth charts on Mc

1(Cj, Ci) and the smooth charts on Mc
2(Cj , Ck, Ci).

This shows that the space Mc
≤2(Cj, Ci) of unparameterized flow lines with at most

2 cascades from Cj to Ci is a smooth manifold without boundary of dimension λj −
λi + dim Cj − 1.

Continuing by induction, for distinct j1, j2, . . . , jn−1 ∈ {1, 2, . . . , l} the fibered prod-
uct

((−ε,∞) ×Mf (Cj, Cj1)) ×Cj1
((−ε,∞)×Mf(Cj1 , Cj2)) ×Cj2

· · ·
×Cjn−2

((−ε,∞)×Mf(Cjn−2
, Cjn−1

)) ×Cjn−1
Mf(Cjn−1

, Ci)

with respect to the maps ϕρ(t) ◦ ∂+ ◦ π2 and ∂− ◦ π2 is a smooth manifold. The
part of the space where −ε < tk < 0 for some k is diffeomorphic to an end of
Mc

≤n−1(Cj, Ci), and the part of the space where tk ≥ 0 for all k is diffeomorphic
to Mc

n(Cj, Cj1 , . . . , Cjn−1
, Ci). Thus, the space Mc

≤n(Cj, Ci) of unparameterized flow
lines with at most n cascades from Cj to Ci is a smooth manifold without boundary
of dimension λj − λi + dim Cj − 1. Moreover,

Mc
≤n(Cj, Ci)

(∂−,∂+)−→ Cj × Ci

is transverse to W u
fj

(q)×W s
fi
(p). The pullback of W u

fj
(q)×W s

fi
(p) under this map is

the space of unparameterized flow lines with at most n cascades from q to p:

Mc
≤n(q, p) =

n
⋃

k=0

Mc
k(q, p).

Hence, for any 0 ≤ n ≤ l the space Mc
≤n(q, p) is either empty or a smooth manifold

without boundary of dimension λq − λp − 1. Taking n = l we see that Mc(q, p) is
either empty or a smooth manifold without boundary of dimension λq − λp − 1.

Now, an orientation on M and orientations on Cj for all j = 1, . . . , l determine
orientations on the above fibered products by the results in Section 5.2 of [7]. If we
choose the gluing diffeomorphisms to be compatible with these orientations, then we
obtain an orientation on Mc(q, p).

2

4. Broken flow lines with cascades

We will now consider the compactness properties of Mc(q, p). In general, Mc(q, p)
will be a non-compact manifold because a sequence of unparameterized flow lines
with cascades from q to p may converge to a broken flow line with cascades from q
to p. Throughout this section we will assume that f satisfies the Morse-Bott-Smale
transversality condition with respect to the Riemannian metric g on a compact smooth
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manifold M , fk : Ck → R satisfies the Morse-Smale transversality condition with
respect to the restriction of g to Ck for all k = 1, . . . , l, and the unstable and stable
manifolds W u

fj
(q) and W s

fi
(p) are transverse to the beginning and endpoint maps.

It is well known that any sequence of unparameterized gradient flow lines between
two critical points of a Morse-Smale function must have a subsequence that converges
to a broken flow line. However, making this statement precise requires a discussion
of the topology on the space of broken flow lines. The topology on the space of
broken flow lines can be defined in several ways, including the compact open topology
(after picking specific parameterizations for the flow lines), in terms of Floer-Gromov
convergence, and using the Hausdorff metric (after identifying a broken flow line with
its image). For a detailed discussion concerning different ways to define the topology
on the space of broken flow lines of a Morse-Smale function and proofs that the
resulting spaces are homeomorphic see [23].

To prove a similar result for cascades we first need to explain what we mean by a
broken flow line with cascades. Roughly speaking, a broken flow line with cascades is
a concatenation of unparameterized flow line with cascades that either flows along an
intermediate critical submanifold for infinite time or rests at an intermediate critical
point of one of the Morse functions fk : Ck → R for some k = 1, . . . , l for infinite
time. To make this more precise, recall that a flow line with cascades is of the form
((xk)1≤k≤n, (tk)1≤k≤n−1) where tk ∈ R+ = {t ∈ R| t ≥ 0}. In particular, tk < ∞,
but we might have tk = 0 for some k. If tk = 0 for some k, then the flow line
with cascades “looks like” it contains a broken flow line. That is, if tk = 0, then
limt→∞ xk(t) = limt→−∞ xk+1(t) and (xk, xk+1) is a broken flow line of the Morse-Bott
function f : M → R. However, (xk, xk+1, 0) is an unbroken flow line with 2 cascades.

Since a flow line with cascades must begin and end at critical points of the Morse
functions chosen on the critical submanifolds, it’s clear that (xk, xk+1) should not be
called a broken flow line with cascades when limt→∞ xk(t) = limt→−∞ xk+1(t) is not a
critical point of fjk

: Cjk
→ R. In order to be consistent, we will not call (xk, xk+1) a

broken flow line with cascades even if limt→∞ xk(t) = limt→−∞ xk+1(t) = r is a critical
point of fjk

: Cjk
→ R. Instead, we will always assume that the time spent resting at

the intermediate critical point is zero, unless the time is otherwise specified. That is,
we will identify (xk, xk+1) with the flow line with 2 cascades (xk, xk+1, 0).

In general, suppose that we have an n-tuple of unparameterized flow lines with
cascades (v1, . . . , vn) such that v1 begins at q ∈ Cr(fj), vn ends at p ∈ Cr(fi),
and vν begins where vν−1 ends for 2 ≤ ν ≤ n. Suppose that vν is represented by
((xν

k)1≤k≤nν , (t
ν
k)1≤k≤nν−1) and vν−1 is represented by ((xν−1

k )1≤k≤nν−1
, (tν−1

k )1≤k≤nν−1−1).
The statement that vν begins where vν−1 ends means that there is a critical point
r of one of the Morse functions fk : Ck → R for some k = 1, . . . , l such that
limt→∞ xν−1

nν−1
(t) ∈ W s

fk
(r) and limt→−∞ xν

nν
(t) ∈W u

fk
(r). So, it appears that (vν−1, vν)

differs from an unparameterized flow line with cascades in that (vν−1, vν) flows along
the intermediate critical submanifold Ck for infinite time. However, if limt→∞ xν−1

nν−1
(t) =
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limt→−∞ xν
nν

(t) = r, then (vν−1, vν) determines an unparameterized flow line with
nν−1 + nν cascades where the time spent resting at the intermediate critical point q
is 0, i.e. the unparameterized flow line with cascades represented by

((xν−1
k )1≤k≤nν−1

, (xν
k)1≤k≤nν , (t

ν−1
k )1≤k≤nν−1−1, 0, (t

ν
k)1≤k≤nν−1).

In this case, we will identify (vν−1, vν) with the unparameterized flow line with cas-
cades represented by the above tuple.

It is interesting to consider what this convention means for a Morse-Smale function
f : M → R. Suppose that p, q, r ∈ Cr(f), γ1 is a gradient flow line from q to
r and γ2 is a gradient flow line from r to p. Then with this convention we are
identifying the broken gradient flow line represented by (γ1, γ2) with the flow line
with 2 cascades (γ1, γ2, 0). In fact, for a Morse-Smale function this convention means
that the only truly broken flow lines with cascades have representations of the form
((xk)1≤k≤n, (tk)1≤k≤n−1), where tk = ∞ for some k.

Definition 14. A broken flow line with cascades from q ∈ Cr(fj) to p ∈ Cr(fi)
is an n-tuple of unparameterized flow lines with cascades (v1, . . . , vn) such that v1

begins at q, vn ends at p, and vν begins where vν−1 ends for 2 ≤ ν ≤ n, subject to the
following restriction. If the last cascade of vν−1 and the first cascade of vν meet at a
critical point of one of the Morse functions fk : Ck → R for some k = 1, . . . , l, then
the time spent resting at the critical point is infinity.

A sequence of unparameterized flow lines with cascades from q ∈ Cr(fj) to p ∈
Cr(fi) must have a subsequence that converges to a broken flow line with cascades
from q to p. This is proved in Theorem A.10 of [16] with respect to Floer-Gromov
convergence (Definition A.9 of [16]). Our approach to this theorem will be in terms
of the Hausdorff metric.

Definition 15. Let (X, d) be a compact metric space and let K1 and K2 be nonempty
closed subsets of X. The Hausdorff distance between K1 and K2 is defined to be

dH(K1, K2) = max

{

sup
x1∈K1

inf
x2∈K2

d(x1, x2), sup
x2∈K2

inf
x1∈K1

d(x1, x2)

}

= inf {ε > 0| K1 ⊆ Nε(K2) and K2 ⊆ Nε(K1)}
where Nε(K) =

⋃

y∈K{x ∈ X| d(x, y) ≤ ε}.

Note: The Hausdorff distance on the set of all nonempty closed subsets Pc(X) of
a compact metric space (X, d) is a metric, and the two definitions of the Hausdorff
metric given above are equivalent. Moreover, the space Pc(X) is itself compact in the
topology determined by the Hausdorff metric. (See for instance Section 7.3 of [24].)

We would now like to identify a broken flow line with cascades with a closed subset
of some compact metric space. For broken flow lines without cascades this is done by
identifying a broken flow line of a Morse-Bott-Smale function with its image in the
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compact manifold M (see Section 2 of [18]). However, a flow line with cascades may
have a cascade xk that ends at a critical point. In this case the parameter tk records
the time spent resting at the critical point instead of time spent flowing along the
critical submanifold. Hence, the map that sends a broken flow line with cascades to
its image in M is not injective. To make this map injective we should keep track of
the times tk, in addition to the image of the broken flow line.

Following [29] we make the following definition.

Definition 16. Define the compactification of R to be R = R ∪ {±∞} equipped with
the structure of a bounded manifold by the requirement that ψ : R → [−1, 1] given by

ψ(t) =
t√

1 + t2

be a diffeomorphism.

We also make the following definition regarding the different gradient flows.

Definition 17. Let f : M → R be a Morse-Bott function on a Riemannian manifold
(M, g) with critical set Cr(f) =

∐l
j=1Cj, and let fj : Cj → R be a Morse function

on the critical submanifold Cj for j = 1, . . . , l. We define the flow of {f, f1, . . . , fl}
on M to be the action φ : R ×M → M given on a point x ∈M for time t ∈ R by

φt(x) =

{

ϕf
t (x) if x 6∈ Cr(f) = C1 ∪ · · · ∪ Cl

ϕ
fj

t (x) if x ∈ Cj for some j = 1, . . . , l

where ϕf
t denotes the 1-parameter group of diffeomorphisms generated by −∇f and

ϕ
fj

t denotes the 1-parameter group of diffeomorphisms generated by −∇fj (with respect
to the restriction of g to Cj) for all j = 1, . . . , l. We extend this action to R by taking
limits as t approaches ±∞.

Note: The flow of {f, f1, . . . , fl} defines a map φ : R×M →M that is smooth when
restricted to R × (M − Cr(f)) or to R × Cr(f).

We now explain how to identify a broken flow line with cascades with an element

of the compact metric space Pc(M) × R
l
, where l is the number of components

of Cr(f) =
∐l

j=1 Cj. Recall that the space of all nonempty closed subsets of M ,

Pc(M), is a compact metric space with respect to the Hausdorff metric. For the
metric on R we will use the totally bounded metric determined by the diffeomorphism
ψ : R → [−1, 1]. That is, for x, y ∈ R we define

d(x, y) =

∣

∣

∣

∣

∣

x√
1 + x2

− y
√

1 + y2

∣

∣

∣

∣

∣

∈ [0, 2]

and note that d has a unique continuous extension to a metric on R. The space

Pc(M) × R
l
is then a compact metric space with respect to the product metric.
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We will map a broken flow line with cascades (v1, . . . , vn) to its image Im(v1, . . . , vn)
in M and the time tj spent flowing along or resting on each critical submanifold Cj

for all j = 1, . . . , l. This gives a nonempty closed subset of M and an l-tuple in R
l
,

i.e. an element Im(v1, . . . , vn) × (t1, . . . , tl) ∈ Pc(M) × R
l
.

More explicitly, we define Im(v1, . . . , vn) ⊂ M for a broken flow line with cascades
(v1, . . . , vn) as follows. Let ν ∈ {1, . . . , n} and suppose that the unparameterized flow
line with nν cascades vν has a parameterization

((xν
k)1≤k≤nν , (t

ν
k)1≤k≤nν−1)

where xν
k ∈ C∞(R,M) and tνk ∈ R+. Then the image of vν in M is defined to be

Im(vν) =
nν
⋃

k=1

xν
k(R) ∪

nν−1
⋃

k=1

φ[0,tν
k
](x

ν
k(∞)) ⊂ M

where φ[0,tνk](x
ν
k(∞)) =

⋃

0≤t≤tν
k
φt(x

ν
k(∞)) and xν

k(∞) = limt→∞ xν
k(t). This definition

is clearly independent of the parameterization, and we define Im(v1, . . . , vn) ⊂ M to
be the union of the images of vν for all ν = 1, . . . , n. Note that Im(v1, . . . , vn) is the
image of a continuous injective path between two critical points which is R-equivariant
with respect to the flow φ of {f, f1, . . . , fl}.

For the other components we map (v1, . . . , vn) to an l-tuple of elements (t1, . . . , tl) ∈
R

l
that records the time spent flowing along or resting on each critical submanifold.

Explicitly, the jth component of this map is defined to be:

0 if the image of (v1, . . . , vn) does not intersect Cj

tj if for some ν = 1, . . . , n the cascade vν flows along or rests on
the critical submanifold Cj for finite time tj

∞ otherwise.

Altogether, this defines an injective map

(v1, . . . , vn) 7→ Im(v1, . . . , vn) × (t1, . . . , tl) ∈ Pc(M) × R
l
.

Definition 18. The topology on the space of broken flow lines with cascades is defined
by the requirement that the above injection be a homeomorphism onto its image.

For q ∈ Cr(fj) and p ∈ Cr(fi) we will identify the space of broken flow lines with
cascades from q to p with its image under the above injection and denote this space

by Mc
(q, p) ⊂ Pc(M) × R

l
.

Theorem 19. The space Mc
(q, p) is compact, and the injection defined above restricts

to a continuous embedding

Mc(q, p) ↪→ Mc
(q, p) ⊂ Pc(M) × R

l
.

Hence, every sequence of unparameterized flow lines with cascades from q to p has a
subsequence that converges to a broken flow line with cascades from q to p.
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Proof: Since Pc(M)×R
l
is compact, any sequence of broken flow lines {(vk

1 , . . . , v
k
nk

)}
in Mc

(q, p) ⊂ Pc(M) × R
l
must have a subsequence that converges to some element

CM × (t1, . . . , tl) ∈ Pc(M) × R
l
. We need to show that there exists a subsequence of

{(vk
1 , . . . , v

k
nk

)} (which we still denote by {(vk
1 , . . . , v

k
nk

)}) such that the limit of this

subsequence (which we still denote by CM × (t1, . . . , tl)) is in Mc
(q, p) ⊂ Pc(M)×R

l
.

We will first show that there exists a subsequence of {(vk
1 , . . . , v

k
nk

)} such that
CM = Im(v1, . . . , vn) for some broken flow line with cascades (v1, . . . , vn) from q to
p. To see this, note that since Im(vk

1 , . . . , v
k
nk

) ⊂ M is R-equivariant with respect

to the flow φ of {f, f1, . . . , fl} and limk→∞ Im(vk
1 , . . . , v

k
nk

) = CM in the Hausdorff

metric, CM is also R-equivariant with respect to the flow φ. Moreover for every k,
Im(vk

1 , . . . , v
k
nk

) is the image of a continuous injective path from q to p with at most
one point on each level set f−1(y) for every regular value y of f and at most one point
on each level set f−1

j (y) for every value y ∈ R for all j = 1, . . . , l. Thus, we can pass

to a subsequence of {(vk
1 , . . . , v

k
nk

)} such that the same holds for the limit. This shows
that after passing to an appropriate subsequence we have CM = Im(v1, . . . , vn) for
some broken flow line with cascades (v1, . . . , vn) from q to p.

Now let j ∈ {1, . . . , l}. For (t1, . . . , tl) there are two cases to consider: 1) the
sequence {Im(vk

1 , . . . , v
k
nk

)} does not intersect the critical submanifold Cj for any k

and 2) the sequence {Im(vk
1, . . . , v

k
nk

)} intersects the critical submanifold Cj for all k
sufficiently large. Otherwise we can pass to a subsequence that fits one of these two
cases. For the first case, note that the limit CM , which is the image of a broken flow
line with cascades, can intersect Cj in at most one point since f decreases along its

gradient flow lines. Thus, for Im(vk
1 , . . . , v

k
nk

) × (tk1, . . . , t
k
l ) ∈ Pc(M) × R

l
we have

tkj = 0 for all k, and tj = 0. For the second case, note that since R is a compact

metric space, we can pass to a subsequence such that tkj → tj for some tj ∈ R. By

passing to a subsequence for each j = 1, . . . , l we obtain an element (t1, . . . , tl) ∈ R
l

such that

Im(vk
1 , . . . , v

k
nk

) × (tk1, . . . , t
k
l ) → Im(v1, . . . , vn) × (t1, . . . , tl) ∈ Pc(M) × R

l

as k → ∞ and tj records the time (v1, . . . , vn) spends flowing along or resting on each
critical submanifold Cj for all j = 1, . . . , l. Therefore, every sequence of broken flow
lines with cascades from q to p has a subsequence that converges to a broken flow line

with cascades from q to p in Mc
(q, p) ⊂ Pc(M) × R

l
.

To see that the injection defined above restricts to a continuous embedding

Mc(q, p) ↪→ Mc
(q, p) ⊂ Pc(M) × R

l

note that the fibered product and gluing constructions used in the proof of Theorem
13 are compatible with the Hausdorff metric. That is, if a sequence of points vk
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contained in a smooth chart of Mc(q, p) converges to a point v in the chart, then

Im(vk) × (tk1, . . . , t
k
l ) → Im(v)× (t1, . . . , tl)

as k → ∞.

2

Corollary 20. If λq − λp = 1, then Mc(q, p) is compact and hence a finite set.

Proof: Let vk be a sequence of unparameterized flow lines with cascades from q to
p. By the preceding theorem vk has a subsequence that converges to a broken flow
line with cascades (v1, . . . , vn) from q to p. Suppose that v1 ends at a critical point
p′ with p′ 6= p. Then Theorem 13 implies that λq > λp′ > λp, which contradicts the
assumption that λq − λp = 1. Thus, p′ = p, n = 1, and every sequence in Mc(q, p)
has a subsequence that converges to an element of Mc(q, p). Therefore, Mc(q, p) is
a compact zero dimensional manifold, i.e. a finite set of points.

2

The preceding corollary allows us to make the following definition under the follow-
ing assumptions: 1) f satisfies the Morse-Bott-Smale transversality condition with
respect to the Riemannian metric g on M , 2) fk : Ck → R satisfies the Morse-Smale
transversality condition with respect to the restriction of g to Ck for all k = 1, . . . , l,
and 3) for all (i, j) and for each pair of critical points (q, p) ∈ Cr(fj) × Cr(fi) the
unstable and stable manifolds W u

fj
(q) and W s

fi
(p) are transverse to the beginning and

endpoint maps. Recall that the total index of a critical point of fj was defined in
Definition 7 as the Morse index relative to fj plus the Morse-Bott index of the criti-

cal submanifold Cj. Let Cr =
⋃l

j=1 Cr(fj) be the set of critical points of the Morse
functions fj : Cj → R, and let Crk ⊆ Cr be the subset of critical points whose total
index is k for all k = 0, . . .m.

Definition 21. Define the kth chain group Cc
k(f) to be the free abelian group generated

by the critical points of total index k of the Morse-Smale functions fj for all j =
1, . . . , l, and define nc(q, p; Z2) to be the number of flow lines with cascades between a
critical point q of total index k and a critical point p of total index k− 1 counted mod
2. Let

Cc
∗(f) ⊗ Z2 =

m
⊕

k=0

Cc
k(f) ⊗ Z2

and define a homomorphism ∂c
k : Cc

k(f) ⊗ Z2 → Cc
k−1(f) ⊗ Z2 by

∂c
k(q) =

∑

p∈Crk−1

nc(q, p; Z2)p.

The pair (Cc
∗(f)⊗Z2, ∂

c
∗) is called the cascade chain complex with Z2 coefficients.
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In the appendix to [16] there is a continuation theorem that implies that the cascade
chain complex with Z2 coefficients is, in fact, a chain complex whose homology is
isomorphic to the singular homology H∗(M ; Z2). We will not prove this here. Instead,
we will use the Morse-Smale functions fj : Cj → R for j = 1, . . . , l to define an explicit
perturbation of f : M → R to a Morse-Smale function hε : M → R such that for
every k = 0, . . . , m

Crk(hε) =
⋃

λj+n=k

Crn(fj),

where λj is the Morse-Bott index of the critical submanifold Cj.
By proving a correspondence theorem, we will show that for any q ∈ Cr(fj) and p ∈

Cr(fi) with λq−λp = 1 there is a one dimensional trivial cobordism between Mc(q, p)
and Mhε(q, p). This cobordism induces an orientation on Mc(q, p), which allows us
to define the above homomorphism ∂c

∗ over Z. Moreover, the cobordism shows that ∂c
∗

is a boundary operator that agrees with the Morse-Smale-Witten boundary operator
of hε up to sign.

5. The Correspondence Theorem

In this section we define a 1-parameter family of Morse-Smale functions hε : M → R

in terms of an explicit perturbation of the Morse-Bott-Smale function f : M → R.
For any ε > 0 the critical set of hε is given by Cr(hε) =

⋃l

k=1 Cr(fk), and the index
of a critical point p ∈ Cr(hε) agrees with the total index of p.

We prove a correspondence theorem which says that for any ε > 0 sufficiently small
there is a bijection between unparameterized flow lines with cascades and unparame-
terized gradient flow lines of hε : M → R between any two critical points p, q ∈ Cr(hε)
with λq − λp = 1. The correspondence theorem allows us to count the number of un-
parameterized flow lines with cascades between q ∈ Crk(hε) and p ∈ Crk−1(hε) with
sign, which defines an integer nc(q, p) ∈ Z.

The integers nc(q, p) define a homomorphism ∂c
k analogous to the Morse-Smale-

Witten boundary operator such that ∂c
k = −∂k (where ∂k denotes the Morse-Smale-

Witten boundary operator of hε). This shows directly that ∂c
k−1 ◦ ∂c

k = 0 and the
homology of the cascade chain complex (Cc

∗(f), ∂c
∗) is isomorphic to the homology of

the Morse-Smale-Witten chain complex (C∗(hε), ∂∗). The Morse Homology Theorem
then implies that the homology of the cascade chain complex with integer coefficients
is isomorphic to the singular homology H∗(M ; Z).

5.1. An explicit perturbation. The following perturbation technique, based on [3],
the Morse-Bott Lemma, and a folk theorem proved in [1], produces an explicit Morse-
Smale function hε : M → R arbitrarily close to a given Morse-Bott-Smale function
f : M → R such that hε = f outside of a neighborhood of the critical set Cr(f). A
similar technique was used in [6] to give a proof of the Morse-Bott inequalities with
somewhat different orientation assumptions than the classical “half-space” method
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using the Thom Isomorphism Theorem (see [8], Appendix C of [15], and Section 2.6
of [25]).

Let f : M → R be a Morse-Bott-Smale function on a finite dimensional smooth
closed Riemannian manifold (M, g). Let Tj be a small open tubular neighborhood
around each connected component Cj ⊆ Cr(f) for every j = 1, . . . , l with local
coordinates (u, v, w) consistent with those from the Morse-Bott Lemma (Lemma 5).
By “small” we mean that the following conditions hold.

(1) Each Tj is contained in the union of the domains of the charts from the Morse-
Bott Lemma.

(2) For i 6= j we have Ti ∩ Tj = ∅ and f decreases by at least three times
max{var(f, Tj)| j = 1, . . . , l} along any gradient flow line from Ti to Tj where
var(f, Tj) = sup{f(x)| x ∈ Tj} − inf{f(x)| x ∈ Tj}.

(3) If f(Ci) 6= f(Cj), then var(f, Ti) + var(f, Tj) <
1
3

∣

∣ f(Ci) − f(Cj)
∣

∣.
(4) For every flow line with n cascades between critical points of relative index

one ((xk)1≤k≤n, (tk)1≤k≤n−1), the image of xk for k = 1, . . . , n intersects the
closure of exactly two of the tubular neighborhoods {Tj}l

j=1 (see Definition 8
and Corollary 20).

In addition, we will assume that the tubular neighborhoods are small enough so
that f : M → R still satisfies the Morse-Bott-Smale transversality condition after
modifying the Riemannian metric on the tubular neighborhoods to make the charts
from the Morse-Bott Lemma isometries on Tj with respect to the standard Euclidean
metric on R

m for all j = 1, . . . , l. From now on we will assume that the Riemannian
metric g has been so modified, i.e. the charts from the Morse-Bott Lemma are
isometries on the tubular neighborhoods with respect to g and the standard Euclidean
metric on R

n.

Pick positive Morse functions fk : Ck → R satisfying the Morse-Smale transversal-
ity condition with respect to the restriction of g to Ck for all k = 1, . . . , l such that
for all i, j = 1, . . . , l and for every pair of critical points (q, p) ∈ Cr(fj) × Cr(fi) the
unstable and stable manifolds W u

fj
(q) and W s

fi
(p) are transverse to the beginning and

endpoint maps (see Lemma 12). For every k = 1, . . . , l extend fk : Ck → R to a
function on Tk by making fk : Tk → R constant in the directions normal to Ck, i.e.
fk is constant in the v and w coordinates coming from the Morse-Bott Lemma. Let
T̃k ⊂ Tk be a smaller open tubular neighborhood of Ck with the same coordinates
as Tk, and let ρk be a smooth bump function which is constant in the u coordinates,
equal to 1 on T̃k, equal to 0 outside of Tk, and strictly decreasing on Tk − T̃k with
respect to |v| and |w|.

Finally, choose ε > 0 small enough so that

sup
Tk−T̃k

ε‖∇ρkfk‖ < inf
Tk−T̃k

‖∇f‖
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for all k = 1, . . . , l, and define

hε = f + ε

(

l
∑

k=1

ρkfk

)

.

The function hε : M → R is a Morse function close to the Morse-Bott-Smale function
f , and the critical points of hε are exactly the critical points of the Morse-Smale
functions fj for j = 1, . . . , l. Moreover, if q ∈ Cj is a critical point of fj : Cj → R

of index λj
q, then q is a critical point of hε of index λhε

q = λj + λj
q , where λj is the

Morse-Bott index of Cj.

Lemma 22. There exists an arbitrarily small perturbation of the Riemannian metric
g such that hε′ : M → R is Morse-Smale for all 0 < ε′ ≤ ε with respect to the
perturbed metric. The perturbed metric can be chosen so that it agrees with g on the
union of the tubular neighborhoods {Tj}l

j=1.

Proof: Let {εi}∞i=1 be a countable dense subset of (0, ε). For every 1 ≤ i < ∞ we
can apply Theorem 2.20 of [1] to conclude that there is a residual subspace Ri of
the open unit ball K1 in a Banach space K such that the function hεi

: M → R is
Morse-Smale with respect to the Riemannian metric g+ ki for all ki ∈ Ri. Moreover,
we can choose the function θ : M → [0,∞) in the statement of Theorem 2.20 to be

zero on
⋃l

j=1 Tj so that ki = 0 on
⋃l

j=1 Tj for all 1 ≤ i <∞.

For any k ∈ ⋂∞
i=1 Ri the Riemannian metric g+k is a metric that agrees with g on

⋃l

j=1 Tj such that hεi
: M → R is Morse-Smale with respect to g+k for all 1 ≤ i <∞.

Moreover, since
⋂∞

i=1 Ri is dense in K1 we can choose k ∈ ⋂∞
i=1 Ri arbitrarily close to

zero. This completes the proof of the lemma since the set of Morse-Smale gradient
vector fields is an open and dense subset of the space of all gradient vector fields on
a Riemannian manifold [26].

2

Note that we can choose the perturbation of the Riemannian metric small enough
so that f : M → R still satisfies the Morse-Bott-Smale transversality condition with
respect to the perturbed metric and for all (i, j) and for every pair of critical points
(q, p) ∈ Cr(fj)×Cr(fi) the unstable and stable manifolds W u

fj
(q) and W s

fi
(p) are still

transverse to the beginning and endpoint maps.

Lemma 23. Let p, q ∈ Cr(hε) with λq − λp = 1, and let 0 < ε′ ≤ ε. If hε′ : M → R

and hε : M → R are Morse-Smale with respect to the same Riemannian metric, then
the number of gradient flow lines of hε′ from q to p is equal to the number of gradient
flow lines of hε from q to p.

Proof: The lemma will be proved by constructing a one dimensional compact smooth
manifold with boundary MF21

(q, p) that is a trivial cobordism between Mhε(q, p) and
Mhε′

(q, p).
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Using the notation in Section 6 of [7], we take f1 = hε, f2 = hε′ , and a smooth
homotopy F21 : M × R → R that is strictly decreasing in its second component such
that for some large T � 0 we have

F21(x, t) =







hε(x)− ρ(t) if t < −T
ĥt(x) if −T ≤ t ≤ T
hε′(x)− ρ(t) if t > T,

where ĥt(x) is an approximation to 1
2
(T − t)(hε(x) − ρ(t)) + 1

2
(T + t)(hε′(x) − ρ(t))

that makes F21 smooth and ρ : R → (−1, 1) is a smooth strictly increasing function
such that limt→−∞ ρ(t) = −1 and limt→+∞ ρ(t) = 1. The moduli space of gradient
flow lines of F21 : M × R → R has a component

MF21
(q, p) = (W u

F21
(q) ∩W s

F21
(p))/R

of dimension 1 (see Lemma 6.2 of [7]) that can be compactified to a smooth manifold
with boundary MF21

(q, p) using piecewise gradient flow lines (see Theorem 6.4 of [7]).
Moreover, the boundary of the compactified space consists of the fibered products

∂MF21
(q, p) = Mhε(q, p) ×p MF21

(p, p)
∐

MF21
(q, q)×q Mh′

ε
(q, p).

Since Mhε(q, p) ×p MF21
(p, p) ≈ Mhε(q, p), MF21

(q, q) ×q Mh′

ε
(q, p) ≈ Mh′

ε
(q, p),

and F21 : M × R → R is strictly decreasing in its second component, MF21
(q, p) is a

one dimensional trivial cobordism between Mhε(q, p) and Mh′

ε
(q, p). Thus, Mhε(q, p)

and Mh′

ε
(q, p) have the same number of elements.

2

Remark: The moduli space MF21
(q, p) used in the preceding proof is, in the language

of [29], a space of λ-parameterized trajectories between the trivial regular homotopies
hε and hε′ (see Definition 2.29 of [29]). A general moduli space of λ-parameterized tra-
jectories is constructed in Theorem 2 of Section 2.3.2 of [29], and its compactification
is discussed in Section 2.4.4.

In summary, we have a Riemannian metric g on M and a 1-parameter family of
Morse functions hε : M → R such that the following conditions hold for all ε > 0
sufficiently small and for all j = 1, . . . , l.

(1) The function h0 = f : M → R satisfies the Morse-Bott-Smale transversality
condition with respect to the metric g.

(2) The functions hε : M → R and fj : Cj → R satisfy the Morse-Smale transver-
sality condition with respect to g.

(3) For all i, j = 1, . . . , l and for each pair of critical points (q, p) ∈ Cr(fj)×Cr(fi)
the unstable and stable manifolds W u

fj
(q) and W s

fi
(p) are transverse to the

beginning and endpoint maps.
(4) The function hε = f outside of the union of the tubular neighborhoods Tj.

(5) The function hε = f + εfj on the smaller tubular neighborhoods T̃j.
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(6) The charts from the Morse-Bott Lemma within the tubular neighborhoods Tj

are isometries with respect to the metric on M and the standard Euclidean
metric on R

m.
(7) In the local coordinates (u, v, w) of a tubular neighborhood Tj we have f =

f(C)−|v|2+|w|2, ρj depends only on the v and w coordinates, and fj depends
only on the u coordinates. In particular, ∇f ⊥ ∇fj on Tj by the previous
condition.

(8) The gradient ∇f dominates ε∇ρjfj on Tj − T̃j.
(9) For q, p ∈ Cr(hε) with λq − λp = 1, the number of gradient flow lines of hε

from q to p is independent of ε > 0.

Lemma 24. Let ε > 0 be small enough so that the above conditions hold, and let
{εν}∞ν=1 be a decreasing sequence such that 0 < εν ≤ ε for all ν and limν→∞ εν = 0.
Let q, p ∈ Cr(hε), and suppose that γεν ∈ Mhεν

(q, p) for all ν. Then there exists a

broken flow line with cascades γ ∈ Mc
(q, p) and a subsequence of {Im(γεν)}∞ν=1 that

converges to Im(γ) in the Hausdorff topology.

Proof: Let q ∈ Cj, p ∈ Ci, and γεν ∈ Mhεν
(q, p) where limν→∞ εν = 0. Recall that

outside of the open tubular neighborhoods {Tk}l
k=1 we have hεν = f , and inside Tk

we have
hεν = f + ενρkfk

where ∇f ⊥ ∇fk, 0 ≤ ρk ≤ 1, and fk > 0. Moreover, ∇hεν = ∇f + εν∇fk

on the smaller open tubular neighborhood T̃k ⊂ Tk, and ∇f dominates εν∇ρkfk

on Tk − T̃k. By passing to a subsequence of {γεν}∞ν=1 we may assume that there
exists a set of distinct integers {j1, j2, . . . , jn−1} ⊆ {1, 2, . . . , l} such that for all ν
we have Im(γν) ∩ Tjk

6= ∅ for all k = 1, . . . , n − 1 and Im(γν) ∩ Tk = ∅ if k ∈
{1, 2, . . . , l} − {i, j1, j2, . . . , jn−1, j}.

Since Pc(M) is compact in the Hausdorff topology, there exists a subsequence of
{γεν}∞ν=1, which we still denote by {γεν}∞ν=1, such that the compact sets

Cεν = Im(γεν ) −
(

Ti ∪
n−1
⋃

k=1

Tjk
∪ Tj

)

converge to some compact set C ∈ Pc(M) as ν → ∞. The interior of each Cεν is
locally invariant under the flow of −∇f , and hence the interior of the limit C is also
locally invariant with respect to the flow of −∇f . Moreover, for every regular value
y of f the level set f−1(y) contains at most one element of Cεν for each ν, and hence
we can pass to a subsequence of {γεν}∞ν=1 such that the same holds for C . Therefore,
there exists a subsequence of {γεν}∞ν=1, which we still denote by {γεν}∞ν=1, and gradient
flow lines x1, . . . , xn of −∇f (not necessarily distinct) such that

Im(γεν ) −
(

Ti ∪
n−1
⋃

k=1

Tjk
∪ Tj

)

→
n
⋃

k=1

Im(xk) −
(

Ti ∪
n−1
⋃

k=1

Tjk
∪ Tj

)
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in the Hausdorff topology as ν → ∞. Moreover, since ∇hεν = ∇f + εν∇ρkfk and
there is a positive lower bound for ‖∇f‖ on Tk − T̃k for all k = 1, . . . , l we have

Im(γεν ) −
(

T̃i ∪
n−1
⋃

k=1

T̃jk
∪ T̃j

)

→
n
⋃

k=1

Im(xk) −
(

T̃i ∪
n−1
⋃

k=1

T̃jk
∪ T̃j

)

in the Hausdorff topology as ν → ∞. We will order the gradient flow lines x1, . . . , xn

as in Definition 8, i.e. xk(t) flows into Tjk
as t increases for all k = 1, . . . , n− 1.

On the tubular neighborhood T̃j we have ∇hεν = ∇f + εν∇fj where ∇f ⊥ ∇fj,

and hence there is a subsequence of {γεν}∞ν=1 such that Im(γεν ) ∩ T̃j converges to a

curve consisting of the union of Im(x1)∩ T̃j and a (possibly broken) gradient flow line
of fj from q to limt→−∞ x1(t). Similar statements apply to the tubular neighborhood

T̃i.
For each tubular neighborhood T̃j1, . . . , T̃jn−1

there are two cases to consider: 1)

there exists a neighborhood U ⊆ T̃jk
of Cjk

such that Im(γεν ) ∩ U = ∅ for all ν or 2)

for every neighborhood U ⊆ T̃jk
of Cjk

we have Im(γεν ) ∩ U 6= ∅ for all ν sufficiently
large. Otherwise we can pass to a subsequence of {γεν}∞ν=1 such that one of these cases

applies. In the first case, there is a positive lower bound for ‖∇f‖ on Im(γεν ) ∩ T̃jk

independent of ν, and hence ∇hεν converges to ∇f on Im(γεν )∩ T̃jk
as ν → ∞. Thus,

xk(t) and xk+1(t) are the same gradient flow line of f , and Im(γεν)∩ T̃jk
converges to

Im(xk) ∩ T̃jk
as ν → ∞.

In the second case, limt→∞ xk(t) ∈ Cjk
since Im(γεν)∩f−1(y) converges to Im(xk)∩

f−1(y) for any y > f(Cjk
) with Im(γεν ) ∩ f−1(y) ∈ T̃jk

. Similarly, limt→−∞ xk+1(t) ∈
Cjk

. Moreover, Im(γεν ) ∩ T̃jk
converges to the union of Im(xk) ∩ T̃jk

, Im(xk+1) ∩ T̃jk

and a curve in Cjk
from limt→∞ xk(t) to limt→−∞ xk+1(t). Since ∇hεν = ∇f + εν∇fjk

in T̃jk
where ∇f ⊥ ∇fjk

, the curve in Cjk
must be a subset of the image of a (possibly

broken) gradient flow line of fjk
. Therefore, there exists a subsequence of {γεν}∞ν=1

and a broken flow line with cascades γ ∈ Mc
(q, p) such that {Im(γεν)}∞ν=1 converges

to Im(γ) in the Hausdorff topology.

2

5.2. Correspondence theorem. Throughout this subsection we will assume that
the function

hε = f + ε

(

l
∑

k=1

ρkfk

)

and the Riemannian metric g on M satisfy all the conditions listed above. The main
goal of this subsection is to prove the following.

Theorem 25 (Correspondence of Moduli Spaces). Let p, q ∈ Cr(hε) with λq−λp = 1.
For any sufficiently small ε > 0 there is a bijection between unparameterized cascades
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and unparameterized gradient flow lines of the Morse-Smale function hε : M → R

between q and p,

Mc(q, p) ↔ Mhε(q, p).

We will prove this theorem using results from geometric singular perturbation the-
ory [21]. In particular, we will use the Exchange Lemma for fast-slow systems [20]
[27] [28]. Roughly speaking, the Exchange Lemma says that a manifold M0 that is
transverse to the stable manifold of a normally hyperbolic locally invariant subman-
ifold C will have subsets that flow forward in time under the full fast-slow system to
be near subsets of the unstable manifold of C . The Exchange Lemma can be viewed
as a generalization of the λ-Lemma, which applies to hyperbolic fixed points (see for
instance Theorem 6.17 and Corollary 6.20 of [4]).

In our setup, we have tubular neighborhoods Tj of the critical submanifolds Cj for
all j = 1, . . . , l and local coordinate charts on Tj that are isometries with respect to
the standard Euclidean metric on R

m. We also have smaller tubular neighborhoods
T̃j ⊂ Tj such that within the smaller tubular neighborhoods the negative gradient
flow of hε : T → R constitutes a fast-slow system because ∇hε = ∇f + ε∇fj and
∇f ⊥ ∇fj. Moreover, we have coordinates (u, v, w) where the function f |T̃j

depends

only on the (v, w) coordinates, which are the fast variables, and the function fj|T̃j

depends only on the u variables, which are the slow variables.

Proof of Theorem 25: Let q ∈ Cr(fj) and p ∈ Cr(fi). An unparameterized
cascade γ ∈ Mc(q, p) can be represented by a flow line with n cascades from q to p:
((xk)1≤k≤n, (tk)1≤k≤n−1), where tk is the time spent flowing along (or resting on) the
intermediate critical submanifold Cjk

. For 1 ≤ k ≤ n − 1, let yk : R → Cjk
be the

parameterized gradient flow line of fjk
: Cjk

→ R satisfying yk(0) = limt→∞ xk(t) and
yk(tk) = limt→−∞ xk+1(t) (as in Definition 8). Assume that yk(0) 6= yk(tk) for any
1 ≤ k ≤ n−1. This last condition is required in order to apply the Exchange Lemma,
and it holds whenever λq − λp = 1. To see this, note that if yk(0) = yk(tk) then there
is a piecewise gradient flow line of f from the beginning of xk to the end of xk+1.
Hence, there is a 1-parameter family of gradient flow lines of f from the beginning of
xk to the end of xk+1 by the gluing theorem for Morse-Bott moduli spaces (see the
proof of Theorem 13). Each of these gradient flow lines determines a unique flow line
with cascade from q to p, and hence dim Mc(q, p) ≥ 1.

For every 1 ≤ k ≤ n − 1, let Sk ⊂ Cjk
be a tubular neighborhood of the image

yk([0, tk]) that is diffeomorphic to some contractible open subset Uk ⊂ R
dim Cjk . The

tubular neighborhood Sk exists because yk([0, tk]) is contractible and hence has a
trivial normal bundle in Cjk

. Similarly, the normal bundle of Sk ⊂ M is trivial, and

hence Sk has a contractible tubular neighborhood in T̃jk
. This establishes Fenichel

coordinates (u, v, w) near Sk. (See Proposition 1 and Section 6 of [20], but note that
we do not need Sk to vary with ε.)
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Let Bk
∆,Uk

be a small “box” in the phase space R
m with respect to the Fenichel

coordinates near Sk, e.g.

Bk
∆,Uk

= {(u, v, w) ∈ R
m| |v| < ∆, |w| < ∆, u ∈ Uk}

for some small ∆ > 0, and let Bk denote the image of Bk
∆,Uk

in M . We will show that
for ∆ > 0 and ε > 0 sufficiently small there exist submanifolds Mk ⊂ W u

hε
(q) that

satisfy the following conditions for every 1 ≤ k ≤ n− 1.

(D1) λjk
≤ dim Mk ≤ λjk

+ dim Cjk
− 1

(T1) There exists a point qk ∈Mk ∩ Bk such that Mk tqk
W s

f (Sk).
(T2) The omega limit set Jk = ω(Mk ∩W s

f (Sk)∩ Vk) ⊂ Sk with respect to the flow
of −∇f is a manifold of dimension dim Mk − λjk

, where Vk is a small enough
open neighborhood of qk to ensure that Mk ∩W s

f (Sk) ∩ Vk is a manifold, and
∇fjk

is not tangent to Jk.
(T3) The tangent space to Mk at qk intersects the tangent space of W s

f (ω(qk)) in a
zero dimensional space.

(I1) If Im(γε) ∩Mk 6= ∅ for some γε ∈ Mhε(q, p), then Im(γ′ε) ∩Mk 6= ∅ for every
γ′ε ∈ Mhε(q, p) with dH(Im(γ′ε), Im(γ)) ≤ dH(Im(γε), Im(γ)).

The manifoldM1 exists as long as ε > 0 is small enough so that the conditions listed
in the previous subsection hold. That is, the conditions in the previous subsection
imply that limt→−∞ x1(t) ∈ W u

hε
(q) and W u

f (limt→−∞ x1(t)) t W s
f (S1). Thus, we can

find a small open neighborhood in W u
hε

(q) around the point r1 where the image of x1

intersects the boundary of Tj with a cross section that intersectsW s
f (S1) transversally.

This cross section flows forward under the flow of −∇hε to a submanifold M̃1 of
dimension λq − 1 that intersects B1 ∩W s

f (S1) at some point q1. The Morse-Bott-
Smale transversality condition implies that λj1 < λj (see Lemma 3.6 of [7]), and

hence λj1 ≤ λj + λj
q − 1 = λq − 1 = dim M̃1. If dim M̃1 ≤ λj1 + dim Cj1 − 1,

then we can take M1 = M̃1. Otherwise, we can find a small open ball M1 ⊂ M̃1 of
dimension λj1 + dim Cj1 − 1 that satisfies the above conditions. Thus, M1 exists and
dim M1 = min{λq − 1, dim Cj1 + λj1 − 1}.

We will see by induction using the Exchange Lemma that for ∆ > 0 and ε > 0
sufficiently small Mk ⊆ W u

hε
(q) exists for k = 2, . . . , n− 1. For this purpose, assume

that ∆ > 0 and ε > 0 are small enough so that the conditions listed in the previous
subsection hold, the Exchange Lemma applies around Sk for all k = 1, . . . , n− 1, and
M1 exists. Assume that for some k there exists a submanifold Mk ⊆ W u

hε
(q) that

satisfies the above conditions, and let M∗
k and J∗

k denote the manifolds obtained by
flowing Mk and Jk forward in time with respect to −∇hε on the time interval [0,∞).
The dimension of M∗

k is dim Mk + 1, and dim J∗
k = dim M∗

k − λjk
.

Let xε
k+1(t) be the gradient flow line of hε through the point rk+1 where the image

of xk+1(t) intersects the boundary of Tjk
. We have limt→−∞ xε

k+1(t) = limt→−∞ yk(t).
Hence, as long as ε > 0 is sufficiently small, the point where xε

k+1(t) exits the box
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"x t( )
k

y (0)
k

rk

Dk
0

~rk

Bk will be in W u
f (J∗

k). Choose a small open disk Dk in W u
f (J∗

k) of dimension dim M∗
k

around this point. The Exchange Lemma implies that by decreasing ε > 0 we can
find an open disk D̃k in M∗

k as close as we like to Dk. (See for instance Theorem 6.5
of [20], Lemma 6 of [21], or Theorem 2.3 of [28].) In this context “close” can be in
the sense of Definition 6.13 of [4] or “close” in the sense that D̃k can be expressed as
the graph of a vector valued function over Dk that goes to zero exponentially along
with its derivatives up to finite order as ε → 0 [28].

The open disk Dk flows forward in finite time under the flow of −∇hε to a neigh-
borhood D′

k of rk+1, and the open disk D̃k flows forward under the same flow to an
open set D̃′

k in M∗
k close to D′

k. In fact, inside Tjk
the disks D̃k and Dk get closer

under the forward time flow of −∇hε. The Morse-Bott-Smale transversality condition
implies that D′

k t W s
f (Sk+1), and hence D̃′

k t W s
f (Sk+1) if D̃′

k is close enough to D′
k

since the collection of maps transverse to a given submanifold is locally stable (see for
instance Theorem 5.16 of [4] or Theorem 3.2.1 of [17]). Thus, we can decrease ε > 0,
if necessary, to obtain an open set D̃′

k ⊂ M∗
k such that D̃′

k t W s
f (Sk+1). Moreover,

rk+1 ∈ D′
k ∩W s

f (Sk+1) 6= ∅, and hence there exists a point r̃k+1 ∈ D̃′
k ∩W s

f (Sk+1) such

that D̃′
k tr̃k+1

W s
f (Sk+1).

For ε > 0 sufficiently small, the point r̃k+1 ∈ W s
f (Sk+1) flows forward in time under

the flow of −∇hε to a point qk+1 ∈ ∂Bk+1 since the tubular neighborhoods {Tj}l
j=1

were chosen small enough so that the image of xk+1 does not intersect the closure
of any of the tubular neighborhoods other than T jk

and T jk+1
. Moreover, D̃′

k ⊆ M∗
k

flows forward in time under the flow of −∇hε to a submanifold of W u
hε

(q) that is
transverse to W s

f (Sk+1) at qk+1. Thus, we can find a manifold Mk+1 ⊂ M∗
k ⊂ W u

hε
(q)
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of dimension min{dim Mk, dim Cjk+1
+ λjk+1

− 1} that satisfies the above conditions.
This completes the induction. Note that if we have to decrease ε > 0 during the
induction, then we also have to modify Mk ⊂W u

hε
(q). However, ε > 0 will only need

to be decreased a finite number of times. Hence, we can find a sufficiently small ε > 0
so that Mk ⊂W u

hε
(q) exists for all k = 1, . . . , n− 1.

To summarize, we have shown that for ∆ > 0 and ε > 0 sufficiently small there
exist submanifolds Mk ⊆ W u

hε
(q) and points qk such that Mk tqk

W s
f (Sk) for all

k = 1, . . . , n− 1. Moreover, the point qk is the image under the forward time flow of
−∇hε of a point r̃k ∈W s

f (Sk)∩W u
hε

(q) close to the point rk where the image of xk(t)
intersects the boundary of Tjk−1

,

M∗
n−1 ⊂M∗

n−2 ⊂ · · · ⊂ M∗
2 ⊂M∗

1 ⊂ W u
hε

(q),

and every gradient flow line in Mhε(q, p) whose image is sufficiently close to the image
of the cascade γ ∈ Mc(q, p) intersects M∗

n−1 (and hence Mk for all k = 1, . . . , n− 1).
We can now repeat the above argument involving the Exchange Lemma for Mn−1 to
see that for ∆ > 0 and ε > 0 sufficiently small we can find an open neighborhood
D̃′

n−1 ⊂ M∗
n−1 as close as we like to a small open neighborhood D′

n−1 ⊂ W u
f (J∗

n−1)
around the point rn where the image of xn(t) intersects the boundary of Tjn−1

.
Now recall the assumption that

Mc
n(Cj, Cj1, . . . , Cjn−1

, Ci)
(∂−,∂+)−→ Cj × Ci

is transverse and stratum transverse to W u
fj

(q)×W s
fi
(p) (Definition 11). This implies

that

Mf (J
∗
n−1, Ci)

∂+−→ Ci

is transverse to W s
fi
(p) at limt→∞ xn(t) ∈ W s

fi
(p), since the endpoint map ∂+ :

Mc
n(W

u
fj

(q), Cj1, . . . , Cjn−1
, Ci) → Ci factors through ∂+ : Mf (J

∗
n−1, Ci) → Ci and

is transverse to W s
fi
(p) at limt→∞ xn(t). Therefore, D′

n−1 trn W
s
f (W s

fi
(p)) as long as

D′
n−1 is sufficiently small. Thus if ε > 0 is sufficiently small, there exists a point

r̃n ∈ D̃′
n−1 ∩ W s

f (W s
fi
(p)) close to rn such that D̃′

n−1 tr̃n W s
f (W s

fi
(p)). The un-

parameterized gradient flow line of hε that passes through r̃n is an element γr̃n ∈
Mhε(q, p) whose image is close to the image of the cascade in Mc(q, p) represented
by ((xk)1≤k≤n, (tk)1≤k≤n−1).

Moreover, if λq − λp = 1 then we can choose the D′
k small enough so that γ ∈

Mc(q, p) is the unique element whose image intersects D′
k for all k = 1, . . . , n − 1.

Then if D̃′
n−1 is sufficiently close to D′

n−1 , the gradient flow line of hε through r̃n will

be the unique element of Mhε(q, p) whose image intersects D̃′
n−1 ⊂ M∗

n−1. Thus for
λq − λp = 1 and ε > 0 sufficiently small we have defined an injective map

Mc(q, p) → Mhε(q, p)

that sends a cascade γ ∈ Mc(q, p) to a gradient flow line γε ∈ Mhε(q, p) such that
Im(γ) is close to Im(γε) in the Hausdorff topology. To see that this map is surjective,
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first recall that Lemma 23 says that if ε > 0 is sufficiently small, then the (finite)
number of elements in Mhε(q, p) does not depend on ε > 0. So, if the above map
were not surjective, we could pick a decreasing sequence {εν}∞ν=1 with limν→∞ εν = 0
and a sequence of elements γεν ∈ Mhεν

(q, p) such that γεν is not in the image of the
map

Mc(q, p) → Mhε(q, p) ↔ Mhεν
(q, p)

for all ν. Lemma 24 would then imply that there exists a subsequence of {Im(γεν)}∞ν=1

(which we still denote by {Im(γεν)}∞ν=1) that converges to the image of some element
γ ∈ Mc

(q, p) = Mc(q, p) in the Hausdorff topology. But if we were to apply the
above construction to γ, then for ν sufficiently large we would get an element γr̃n ∈
Mhεν

(q, p) that intersects an open neighborhood D̃′
n−1 ⊂M∗

n−1 nearW u
f (Cjn−1

). Since

the sequence {Im(γεν)}∞ν=1 is converging to Im(γ) we must have Im(γεν ) ∩ D̃′
n−1 6= ∅

for ν sufficiently large by condition (I1), and since γr̃n is the unique gradient flow line

in Mhεν
(q, p) whose image intersects D̃′

n−1, we see that γεν = γr̃n is in the image of
the above map for ν sufficiently large. This implies that the above map is surjective
and hence bijective.

2

5.3. Correspondence of chain complexes. Fix ε > 0 small enough so that the
conclusion of Theorem 25 holds. If we identify Mc(q, p) with Mhε(q, p) × {0} using
Theorem 25, then

Mhε(q, p) × [0, ε]

determines a trivial smooth cobordism betweenMc(q, p) and Mhε(q, p) ≈ Mhε(q, p)×
{ε}. If we choose orientations for the unstable manifolds of hε, then Mhε(q, p) be-
comes an oriented zero dimensional manifold and there is an induced orientation on
Mhε(q, p) × [0, ε].

Definition 26. Let p, q ∈ Cr(hε) with λq − λp = 1, define an orientation on the
zero dimensional manifold Mc(q, p) by identifying it with the left hand boundary of
Mhε(q, p) × [0, ε].

An orientation on Mc(q, p) assigns a +1 or −1 to each point in Mc(q, p). This
determines an integer nc(q, p) = #Mc(q, p) ∈ Z. Moreover, the one dimensional
manifold Mhε(q, p) × [0, ε] consists of finitely many closed intervals where the right
hand boundary is identified with Mhε(q, p). Thus,

nc(q, p) = −nhε(q, p).

Definition 27. Define the kth chain group Cc
k(f) to be the free abelian group generated

by the critical points of total index k of the Morse-Smale functions fj for all j =
1, . . . , l, and define nc(q, p) to be the number of flow lines with cascades between a
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critical point q of total index k and a critical point p of total index k− 1 counted with
signs determined by the orientations. Let

Cc
∗(f) =

m
⊕

k=0

Cc
k(f)

and define a homomorphism ∂c
k : Cc

k(f) → Cc
k−1(f) by

∂c
k(q) =

∑

p∈Crk−1

nc(q, p)p.

Corollary 28 (Correspondence of Chain Complexes). For ε > 0 sufficiently small
we have Cc

k(f) = Ck(hε) and ∂c
k = −∂k for all k = 0, . . . , m, where ∂k denotes the

Morse-Smale-Witten boundary operator determined by the Morse-Smale function hε.
In particular, (Cc

∗(f), ∂c
∗) is a chain complex whose homology is isomorphic to the

singular homology H∗(M ; Z).
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