THE FLOW CATEGORY OF THE ACTION
FUNCTIONAL ON LG, ,.+(C)

DAVID E. HURTUBISE

ABSTRACT. The flow category of a Morse-Bott-Smale function
fa : Go(C*®) — R is shown to be related to the flow category
of the action functional on the universal cover of LG,, ,+1(C) via
a group action. The Floer homotopy type and the associated co-
homology ring of fa : G,,(C*®) — R are computed. When n =1
this cohomology ring is the Floer cohomology of G1 144(C).

1. INTRODUCTION

In [8] Floer defined cohomology groups associated to a perturbed ac-
tion functional on the loop space of a monotone symplectic manifold. In
related papers Floer defined cohomology groups for the Chern Simons’
functional on a 3-manifold [6] and for the intersection of Lagrangian
submanifolds [7]. Floer’s cohomology groups were defined using infi-
nite dimensional Morse theoretic techniques, but in several aspects his
methods were fundamentally different from those in traditional infinite
dimensional Morse theory. For example, the critical points in his the-
ory all have infinite index (although the relative index between any two
critical points is finite); also, the higher dimensional spaces of piecewise
gradient flow lines in Floer’s theory may be non-compact.

Recently Cohen, Jones, and Segal have been studying the properties
that a function on an infinite dimensional manifold must have in order
to define Floer cohomology. Furthermore, in several cases they have
studied, the “Floer function,” i.e. a function which can be used to de-
fine Floer cohomology groups, can actually be used to define an inverse
system of spectra (a pro-spectrum). They call this inverse system of
spectra the “Floer homotopy type” and the Floer cohomology groups
can be recovered from the Floer homotopy type. One of their goals is
to discover what additional properties (if any) a Floer function must
satisfy in order to define the Floer homotopy type.

A basic component of their theory is that one can encode the dy-
namics of a Floer function in terms of a topological category which
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they call the “flow category.” The objects of the flow category are the
critical points of the function and the morphisms are the unparameter-
ized piecewise gradient flow lines of the function. In finite dimensions
the flow category is compact (i.e. the morphism spaces are compact)
and framed (i.e. there is a stable framing of each morphism space).
The geometric realization of the flow category of an arbitrary Morse
function on a finite dimensional compact manifold is homotopy equiv-
alent to the manifold, and if the function satisfies the Morse-Smale
transversality condition then the geometric realization of the flow cat-
egory is homeomorphic to the manifold [4]. In infinite dimensions the
Floer homotopy type is constructed from the flow category of the ac-
tion functional on a covering of the manifold. For instance, the Floer
homotopy type of the action functional on LCP¥* is constructed from
the flow category of the action functional on the universal cover of
LCP*.

In [5] Cohen, Jones, and Segal announced some results concerning
the Floer homotopy type of the action functional on LCP*. In this pa-
per I generalize their results by proving a theorem that relates the flow
category of the action functional on the universal cover of LG, ,+1(C)
to the flow category of a Morse-Bott function on G, (C*). One diffi-
culty which arises with the flow category of the action functional on
the universal cover of LG,, ,,4+1(C) is that the morphism spaces are not
compact. In [5] Cohen, Jones, and Segal note that the Donaldson-
Uhlenbeck compactification of the space of (parameterized) gradient
flow lines of the action functional between any two critical subman-
ifolds in the universal cover of LCP* (i.e. the space of holomorphic
maps CP' — CP* of degree d) is homeomorphic to CP*+D+D)-1
Moreover, they note that for every k € Z, one can construct a nat-
ural compactification of the flow category by embedding it into the
flow category of a Morse-Bott-Smale function f4 : CP* — R. The
Floer homotopy type of the compactified flow category of the action
functional on LCP* is

CP>® «— ((CPOO)—(H’@)% — ((CPOO)_Q(H’“)“ — ..

where v, denotes the Hopf line bundle over CP>.

When n > 1 there is a Morse-Bott-Smale function f4 : G,(C*) — R
(for every k € Z,) which generalizes the function f4 : CP>* — R
used by Cohen, Jones, and Segal, but the flow category of the action
functional on the universal cover of LG, ,4+1(C) does not embed into
the flow category of this function. There is however an R-equivariant
fiber bundle which relates the two flow categories. In this paper I
prove that there exists a Morse-Bott-Smale function f4 : G,(C*) — R
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such that for an open dense subset U C V,,(C*) the topological group
GL:(C[z, 271]), consisting of n x n matrices with Laurent polynomial
entries whose determinant is a non-zero constant, acts on U and induces
a flow category on U/GLE(C|z,27"]) from the gradient flow lines of
fa: Gp(C*®) — R. The induced flow category is isomorphic to the flow
category of the action functional on the universal cover of LG, ,,1(C).
That is we have the following fiber bundle,

GL;,(Clz,27'])/GLa(C)

U/GL,(C)

U/GLE(Clz, 271])

whose projection map 7 is R-equivariant with respect to the restriction
of the gradient flow of f4 : G,(C*®) — R to U/GL,(C) C G,(C>).
Later in this paper U C V,,(C*) is identified as the space of all poly-
nomial maps C* — V,, ,+1(C). Note that when n = 1 we have 7 = id
and this reduces to the result announced by Cohen, Jones and Segal in
[5]

The Floer homotopy type of f4: G,,(C®) — R has
Gn(C®) «— Gn(COO)—(TH-k)'Yn - Gn((coo)—2(n+k)“/n — ...

as a cofinal system where 7, denotes the tautological n-plane bundle
over G,,(C*) and the maps are induced by certain bundle inclusions.
Applying H* and using the Thom Isomorphism Theorem we have the
following direct system.

The direct limit of this system is H*(GH(COO))[C;(”M)]. When n =1
this ring is the Floer cohomology of CP*.

2. FLow CATEGORIES

The flow category of a Morse function on a finite dimensional com-
pact smooth Riemannian manifold M was first defined by Cohen, Jones,
and Segal in [3]. As they note in [5] their definition readily extends to
a Morse-Bott function [2] on a finite dimensional compact smooth Rie-
mannian manifold.

Definition 1. Let f : M — R be a Morse-Bott function on a finite
dimensional compact smooth Riemannian manifold M. The flow cate-
gory of f, denoted Cy, is the topological category whose objects are the
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critical points of f topologized as a subspace of M and whose morphisms
are the unparameterized piecewise gradient flow lines of f. That is, for
any two critical points a and b, Mor(a,b) is defined to be the space of
all continuous maps w : [f(b), f(a)] — M satisfying

L w(7() =b

2. w(f(a))=a

3. Away from the critical points of fa the map w is smooth and

satisfies the following differential equation.

do _ V(f)
it~ VP

Mor(a,b) is topologized as a subset of the space of all continuous maps
from the closed interval [f(b), f(a)] to M. This space of continuous
maps is given the compact-open topology. Composition in Cy is given
by concatenation.

In [3] Cohen, Jones, and Segal prove the following theorem for a
Morse function f defined on a finite dimensional compact smooth Rie-
mannian manifold M, and in [5] they note that their proof generalizes
to the case when f is Morse-Bott.

Definition 2. Let f : M — R be a Morse-Bott function defined on
a smooth Riemannian manifold M. f is said to satisfy the Morse-
Bott-Smale transversality condition if and only if for any two critical

submanifolds M and N, W*(m) h W*(N) for all m € M.
Let BCy denote the geometric realization of Cy.

Theorem 3.
(1) If f : M — R is a generic Morse-Bott function (one whose gradient
flow satisfies the Morse-Bott-Smale transversality condition) then there
1s a homeomorphism

BCy = M.
(2) For any Morse-Bott function f : M — R there is a homotopy

equivalence
BC f ~ M.
The above definition of the flow category is sufficient for finite di-
mensional compact manifolds, but in infinite dimensions the equation
b V()
dt IV
may not give a well posed initial value problem. Moreover, we would

prefer a definition of the flow category which makes sense in the more
general setting of an R-action on a space X where X is not necessarily
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a manifold. The following definition is general enough to apply to a
wide variety of problems.

Definition 4. Let X be a metric space with an action R x X — X.
Let a,b € Ob(Cx). Define Mor'(a,b) to be the space of all piecewise
flow lines on X from a to b, i.e. R-equivariant subsets of X which are
the images of continuous injective paths from a to b. The topology on
Mor'(a,b) is the topology induced from the sup — inf-metric dg;, i.e. if
l1,ly € Mor'(a,b), then

dsi(l1,1ls) = sup inf d(zq,x2) + sup inf d(xq, )

z1€ly T2€l2 xo€ly T1€h
where d is the metric on X.

Theorem 5. For a finite dimensional compact smooth Riemannian
manifold M there is a homeomorphism

¢ : Mor(a,b) — Mor'(a,b)
for any a,b € Ob(Cy) defined by sending a map in Mor(a,b) to its

mage.

Proof: Tt is clear that ¢ is a bijection. Let wy,ws € Mor(a,b). Since
dsi(P(w1), P(w2)) < dsup(wi, w2)

¢ is continuous.

Now assume that I; — [ € Mor'(a,b). To show that ¢~ is continu-
ous it suffices to show that ¢~*(l;) — ¢~*(I). To prove this we will use
the fact that for a compact finite dimensional manifold M the space
Mor(a,b) is compact [3]. Ascoli’s Theorem then implies that Mor(a, b)
is uniformly equicontinuous.

Pick any € > 0. Choose ¢ > 0 such that

|t1 — tg‘ <0 1mphes d(u)(tl),W(tg)) < 6/2
forallty, to € [f(b), f(a)] and for allw € Mor(a,b). Since f is uniformly
continuous there exists ¢; > 0 such that
d(z1,m2) < &1 implies |f(z1) — f(22)| <0
for all 1,25 € M. Choose J such that j > J implies
dsi(lj7 l) < min{él, 6/2}
Then for any t € [f(b), f(a)] and for all j > J we have

(¢~ (1;)(t), 6~ (D) < d(¢~ (D(t), 2;) + d(xj, ¢~ (1))(t))
where x; € [; is the point closest to ¢~*(1)(¢). Since d(¢~(1)(t), z;) <
min{dy, €/2} and f(¢~1(1)(t)) =t we have

|t = fla;)| <0
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which implies d(z;, ¢~ *(1;)(t)) < €/2. Therefore,

(¢~ (1)(8), o (D)(1) < €/2+ ¢/2
for all t € [f(b), f(a)] and for all j > J.
O

The assumption that X is metrizable is not essential. Given any
topological space X with an action R x X — X we can take as a basis
for the topology of Mor'(a,b) the sets

B(Uy,...,U,) ={l € Mor'(a,b)|iNU; # 0 forall j =1,... ,n}

where Uy, ... ,U, are open sets in X. It is easy to see that the topol-
ogy defined by this basis agrees with the topology defined above on
Mor'(a,b) when X is a metric space.

From now on we will define the flow category C; by taking Mor'(a, b)
as the space of morphisms from a to b. The main advantage to this
approach is that the flow category is now defined for every topological
space X with an action R x X — X. The following theorem follows
immediately from the definition.

Theorem 6. Let X and Y be R-spaces and let g : X — Y be an R-
equivariant map. Then g induces a functor G : Cx — Cy. If g is
continuous, then G is continuous.

3. THE RELATIONSHIP BETWEEN THE TWO FLOW CATEGORIES

Let (Gpntk(C),w) denote the complex Grassmann manifold of n-
planes in C"** with its standard symplectic form w. Since G, ,1x(C)
is simply connected, m;j(LGy, n1+%(C)) = Tj41(Gpnik(C)) for all j € Z
where LG, ,4+%(C) denotes the free loop space. The universal cover of
the free loop space consists of equivalence classes [y, w] where vy : ST —
Grnsk(C) is in LG, nyk(C) and 0 : D* — Gy, 4x(C) is an extension
of v well defined up to homotopy rel S 1. The action functional A, :
LG 1k (C) — R is defined by

Adp = [ o

This descends to a function A, : LG, ,4£(C) — R/Z.

In [8] Floer defined cohomology groups graded mod 2N for a mono-
tone symplectic manifold (M, w) where N is the minimal Chern num-
ber of M. Floer’s chain complex is generated by the critical points of
a perturbation of the action functional on M. He defined an index for
these critical points which is well defined mod 2N. In [17] Salamon and
Zehnder defined a Maslov index for the critical points of a perturbation
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of the action functional on the universal abelian cover of a symplectic
manifold (M,w). Their index can be used to define Floer cohomology
groups graded over Z and periodic with period 2N (see section 10.1
of [14]). The universal abelian cover of M is the covering space of
LM whose group of deck transformations is the image of the Hurewicz
homomorphism my(M) — Hy(M) modulo torsion. Since G, ,+%(C) is
simply connected and m2(G,, +£(C)) = Z is torsion free, the universal

abelian cover of G, ,,4+(C) is the universal cover LG, ,,11(C).

The boundary operator in Floer’s chain complex is defined by count-
ing the number of gradient flow lines of the perturbed action functional
on LM connecting two critical points. In [14] McDuff and Salamon de-
fine the boundary operator by counting the number of gradient flow
lines of the perturbed action functional on the universal abelian cover
of LM connecting two critical points. The projection from the uni-
versal abelian cover of LM to LM is R-equivariant and hence maps
critical points to critical points and gradient flow lines to gradient flow
lines.

In this section we will study the flow category of the unperturbed
action functional on the universal cover of LG, ,11(C). The gradient
flow lines are lifts of the gradient flow lines of the action functional A, :
LG n+x(C) — R/Z. Floer cohomology for the unperturbed action
functional on the universal cover of a symplectic manifold was defined
using spectral sequences by Ruan and Tian in [16].

Definition 7. Define v € LG, n41(C) (or Z\énwk(@)) to be an alge-
braic point if and only if v lies on a gradient flow line which begins and
ends at critical points.

The gradient flow lines of A, are holomorphic curves from R x S! =
C/iZ to Gppnik(C) [8]. Thus v € LG, n4x(C) is an algebraic point if
and only if there exists a holomorphic curve h : CP' — G, 1 1(C) such
that h(e’) = v(s) for all s € [0,27]. A holomorphic curve h : CP! —
Grnnti(C) determines a gradient flow line ' : R — LG, ,41(C) by
B'(t)(s) = h(e'™*) and these flow lines lift to gradient flow lines on
LG4k (C). It is the images of these lifts which determine the flow

category of A, : /E\én,nJrk(C) — R.

Definition 8. The flow category of A, : LG pnik(C) = R/Z (or A,)
is defined to be the flow category of the space of algebraic points in
LG, 1k (C) (or LG, ik (C)) where the R-action is given by the gradient
flow.

The object space of the flow category of A : LG, n+x(C) — R con-
sists of a single critical submanifold, G, ,11(C) C LG, ,,+£(C). Since
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Gnntk(C) is simply connected and (LG, +x(C)) = Z, the object
space of the flow category of A : LG n+k(C) — R is Z x Gy pik(C).
A gradient flow line of the action functional R — LG, ,+1(C) which
begins and ends at critical points is given by a holomorphic map
h: CP' — Gpnik(C). Such maps can be represented by equivalence
classes of n x (n+ k) matrices with polynomial entries (see for instance
[13]). As we will see later in this section, the lifts of the corresponding

gradient flow lines to Z\én,wk(@) can be represented by equivalence
classes of n x (n + k) matrices with Laurent polynomial entries.

Let C[z,27!] be the ring of Laurent polynomials. As a vector space
over C we have

Clz, 271 = C™.
We will use the notation V,, ,++(C[z, 27!]) to denote the Stiefel manifold
of n-tuples of linearly independent vectors in the infinite dimensional
complex vector space
Clz, 271 "™ =Clz, 27 ] x --- x C[z, 27} = C>

(. /

n:k
and
Grnk(Clz,27']) = Vaunan(Clz, 271)) /GLn (C) = G5 (C™)

to denote the infinite dimensional complex Grassmann manifold of n-
planes in C[z, z71|"**.

Let M, n11(C) be the set of all n x (n + k) matrices with entries
in C and let M, ,,x(C[z,27]) be the set of all n x (n + k) matrices
with entries in C[z, z27!]. For every w € C* we have an evaluation map
ew : Vanik(Clz,27Y) = M, ,14(C) defined by evaluating the Laurent
polynomial entries of M € V,,,,1(C[z, 27']) at the point w. We define

U= Ponr(Clz, 27 = [ €' (Vansn(C))

weC*

to be the elements of V,,+(C[z,27!]) which are pointwise linearly
independent on C*. In other words, P, ,.x(C[z,27']) is the space of
polynomial maps C* — V,, ,,41(C) (see Section 3.5 of [15]).

Let GL,(Cl[z,z7]) be the group of all n x n matrices with Laurent
polynomial entries whose determinant is invertible in C[z, 27!] and let
GL:(Clz, 27']) be the subgroup consisting of those matrices whose de-
terminant is a non-zero constant. The main theorem in this paper can
now be stated precisely as follows.

Theorem 9. The flow category of A : Z\ém%k(@) — R is isomorphic
to a flow category on P, ., x(Clz,27%)/GL:(Clz, 27Y]) induced from
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the gradient flow of a Morse-Bott-Smale function fs : G,(C>®) — R,
Prnik(Clz,27Y) is an open dense subset of Vi nix(Clz, 271]) and the
flow category on the orbit space Py n+k(Clz,271])/GLS(Clz, 27Y) is in-
duced via the following R-equivariant fiber bundle.

GL;,(Clz,27'])/GLn(C) ——= Ponsr(Clz,271])/GL(C)

an_,_k(C[Z, Z_l])/GL;(C[Z> Z_l])

The function fa : Gpnik(Clz,271]) — R is the direct limit of a sys-
tem of Morse-Bott-Smale functions defined on finite dimensional Grass-
mann manifolds consisting of n-planes inside the (n+ k)-product of the
finite dimensional complex vector space of Laurent polynomials whose
degrees are bounded by some integer j € Z, .

For each j € Z, define C[z, 27']; to be the collection of all Laurent
polynomials of the form

a_jz_j + a_j+1z_j+1 + -+ aj_lzj_l + ajzj.
We have a smooth action
GLn(C) X Vounyk(Clz, 271;) = Vian(Clz, 271);)

given by matrix multiplication on the left by an element of GL,(C)
(see for instance [10] p. 193-4 or [9] p. 94-5) and the quotient space is

Vont(Clz, 2715)/GL(C) = Crnal(Clz, 27'1) & G usiyasn(©)

the Grassmann manifold of n-planes in C[z, z!]**. Taking a direct

limit over j we have the infinite dimensional complex Grassmann man-
ifold

Vinak(Clz, 271)/GL,(C) = Gpnsr(Clz, 271]) = G, (C™).

Grni(Clz, 27Y;) is diffeomorphic to the orbit of the adjoint ac-
tion of the unitary group Up4r)2j+1) Whose spectrum is (1,...,1) x
(0,...,0) € R* x R"R)2i+k (see for instance [1] p. 54-55). Choosing a
diagonal matrix in this orbit, o, we have defined a unique U, 11)(2j+1)-
equivariant diffeomorphism

¢ : Gnnk(Clz, z1) — Uln+k)(2j+1) - To-
For every j € Zy let M; be the (2j + 1) x (25 + 1) diagonal ma-
trix whose mth diagonal entry is mv/—1 where —j < m < j (we are
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indexing the entries of M; by {—j,—j+1,...,7—1,7}). Let

M; 0

A= . cu((n+k)(2j+1))

0 M,
be the skew-Hermitian diagonal matrix with n + k blocks of M; along
the diagonal. These matrices define Morse-Bott-Smale functions fy, :
Grnsrl(Clz 271];) — R given by fa, () =< 6(p), A; > for all p €
Grnik(Clz, 271;) where < -, - > denotes the Killing form .

For every p € Gy 44(C[z, 27'];) the gradient flow line of f4, through
p, with respect to the pullback under ¢ of the Killing form, is 7,(t) =
Ly(p) where L, : C[z, 271%™ — C[z,27]7™" is the linear map deter-
mined by the matrix exp(—itA;) [12]. This flow lifts to V,, ,+x(Cl[z, 27'];)
because exp(—itA;) acts on V, n+x(C[z, 271];) by matrix multiplication
on the right and GL,(C) acts by matrix multiplication on the left. If
M € Vpnik(Clz,27Y;) has l;;(2) € Clz,27!] in its (4,7) entry, then
the matrix M exp(—itA;) € V,,1(Clz,27'];) has ;;(e'z) € Clz, 271
as its (¢,7) entry. That is, the gradient flow of f4, is given by com-
posing l;;(z) with the map z +— e’z for all 4,5 € Z. The function
fa i Gnnik(Clz,271]) — R referred to in Theorem 9 is defined by
Jfa = lim; f4,. The gradient flow lines of f4 are given by composing
each Laurent polynomial entry of an element of V,, ,4x(Cl[z, 27!]) with
the map z — e’z.

Claim 10. P, (C[z,27Y]) is an open dense subset of V;, 1. (C[z, 271]).

Proof:

M € Vpnik(Clz,27Y)) is in P, ,.1(Clz,27Y) if and only if for ev-
ery w € C* the determinant of at least one n x n minor of M(w) is
non-zero. The determinants of the n x n minors of M are Laurent
polynomials and hence have only finitely many roots. By perturbing
the entries of M slightly we can insure that these (":k) polynomials do
not have a root in common. This shows that P, ,,.(C[z,27']) is dense
in V,,1k(Clz,27Y). If M € P, ,,11(Clz,27!]) then the determinants of
the n x n minors of M do not have a root in common. If we perturb
the entries of M slightly then the determinants of the n x n minors of
the perturbed matrix won’t have a root in common either. This shows
that P, . x(Clz, 27']) is open in Vj, ,4x(Clz, 271]).

O

GL,(C[z, z7"]) acts on the left of M, ,,.x(C[z, 27!]) by matrix multi-
plication. This action does not restrict to V,, ,+x(C|[z, 27!]), but it does
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restrict to P, ,+x(C[z, 27']). The proof of the following claim is similar
to that of the preceding.

Claim 11. There exists an action
GLH(C[Za Z_l]) X Pn,n-i-k(c[za Z_l]) - n,n-i-k(c[za Z_l])
given by matriz multiplication on the left by an element of GL,(C[z, 271]).

Note that this action corresponds to Laurent polynomial row operations
on an element of P, ,.(C[z,27']). That is, by multiplying an element
of Pynix(Clz,27!]) on the left by an element of GL, (Cl[z,27']) we can
interchange rows, multiply a row by a unit of C[z, 27!], or add a Laurent
polynomial multiple of one row to another.

GL¢(Clz, z71]) is the kernel of the homomorphism GL,,(C[z, 27!]) —
7, which sends a matrix to the degree of its determinant. Hence,
GL:(Clz, 271]) is a normal subgroup of GL,(C[z,2z7!]), the quotient
group GL,(Clz, 27'])/GL:(Clz, 271]) = Z, and the restriction

GLE(Cl2,27']) % Panebl(Cl227']) = Panis(Clz, 271)
of the GL,(C[z, 27!]) action is free and gives the following fiber bundle

GL;,(Clz, 27 ))/GLa(C) —— Prun+x(Clz,27'])/GLa(C)

Posk(Clz, 27']) /GLY(Clz, 271)).

The reader should note that GL,(C) is not a normal subgroup of
GL:(Clz,27']). The following lemma is an immediate consequence of
the fact that the gradient flow of fa : Gy nsk(Clz,271]) — R is given
by composing Laurent polynomials with the map z — e’z.

Lemma 12. The gradient flow of fa : Gnnix(Clz, 27']) — R restricts
to a flow on Py, x(Clz,27'])/GL,(C). This flow descends to a flow
on P nix(Clz,271)/GLE(Clz, 27Y]) such that 7 is R-equivariant.

Let C,, 1k be the flow category on P, ,+x(Clz,271])/GLS(Clz, 271])
induced from the gradient flow of fa : Gy nix(Clz, 27']) — R. Theorem
9 asserts that C,, ,4x is isomorphic to C 5 .p0 the flow category of the

action functional A : Z\énerk(C) — R. Before giving a rigorous proof
of the theorem we give the following heuristic argument.
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Recall that P, x(C[z, 27']) is the space of all Laurent polynomial
maps C* — V,, ,11(C). We can define a continuous injective map

an_,_k((C[Z, z_l]) - ﬁvn,n+k(c>

into the space of all continuous maps S* — V,, ,,x(C) by restricting an
element of P, ,,+x(Cl[z, 27']) to S*. Similarly, GLS(C|[z, 2']) maps into
the identity component, LyGL,, of the space of all continuous maps
St — GL,(C) and the map

Ponin(Clz, 271)/GLE(Clz, 27Y]) = LVir(C)/LoG Ly = LGy vi(C)

is continuous, injective, and surjects onto the space of algebraic points
in LG, ,11(C). This map is R-equivariant with respect to the flow
induced from f4 : Gpnnix(Clz,27']) — R on the left and the flow of
the action functional on the right.

If the above map was a homeomorphism onto the space of algebraic
loops, then we would have an induced isomorphism of flow categories

Cn,n—i—k - CAnJLJrk

by Theorem 6. However, the above map is definitely not a homeo-
morphism onto the space of algebraic loops as can be seen even in
the simple case n = k = 1 studied by Cohen, Jones, and Segal in [5].
For example one can find sequences in P, ,,+1(C|z, 271]) /GLE(Clz, 271)
that do not converge but whose images do converge to algebraic loops.
Even though the above map is not a homeomorphism onto its image, it
does induce an isomorphism of flow categories. This is possible because
the morphisms in the flow category are “lines on the manifold” rather
than individual points in the manifold.

Proof of Theorem 9:

Let N = ("*). The Pliicker embedding P! : G 14(C) — CPN~1
is defined by sending a plane to the homogeneous coordinates given by
the determinants of the n x n minors of any element of V,, ,,+1(C) whose
rows span the plane. We have a similar map

Pl: Prnii(Clz, 27))/GL; (Clz, 271)) — P(Clz, 27']Y)

defined by sending an equivalence class [M] to the N-tuple of Lau-
rent polynomials (mod C*) given by the determinants of the n x n
minors of M. This generalized Pliicker embedding is well-defined be-
cause multiplying M by an element of GL¢(C|z, 27']) can only change
the determinants of the n x n minors of M by an element of C*.

Lemma 13. Pl : P, ,.1(Clz,27'])/GL:(C[z, 27']) — P(Clz, z7'|V) s
an embedding.
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Proof:

Assume that the determinants of the n x n minors of M, M, €
Py nik(Clz,271]) are the same up to multiplication by an element of
C*. Since the standard Pliicker embedding G,,,,+x(C) — CPN~! is
injective, there exists a matrix of functions G(z) = (g;;(2)) (ie. ¢ :
C* — Cfor all 1 < 14,5 < n) such that G(w)M;(w) = My(w) for all
w € C*. Since M; € P, ,1(C[z,27']) there exists a minor of M,
say (Mj);, whose determinant is not the zero polynomial. For every
1 < 5 < n the jth row of G gives a system of n equations and n
unknowns in gi;, 25, - - - 5 Gnj

(951, Gj2> - -+ Gin) (M) 1 = (Ljn, Lo, -+ Ljn)

where l;1,lj2, ... ,l;, are the entries in the jth row of the minor (Ms);.
If we multiply both sides of the above equations by a high enough
power of z to clear the negative powers of the Laurent polynomials,
then we have an equivalent system of equations in the sense that the
functions g¢;; which solve one system also solve the other. This new
system of equations is a linear system of n equations and n unknowns
over the field of rational functions. Moreover, since the determinant
of (M;); is not zero this new system of equations has a solution over
the field of rational functions. That is, the functions g;; are rational
functions that can only have poles at zero. So as functions the g;; are
Laurent polynomials. Hence, G € GLS(C[z,271]). This shows that
Pl: Py nyk(Clz,27Y)/GLE(Clz, 271]) — P(Clz, 27 1Y) is injective.

It’s clear that Pl : P, ,11(Clz, 27]) /GL.(Clz, 27Y]) — P(Clz, 271Y)
is continuous. To see that the inverse map is continuous it suffices to
show that the composite

Punk(Clz,27"])) & Punsr(Clz, 271) [GL (Clz, 271]) &

PU(Pons+1(Clz, 271))/GL;(Clz, 271])) € P(Clz, 27']Y)

maps open sets to open sets. But every point M € P, ,,x(C[z,271])
has an open neighborhood given by perturbing the coefficients of the
entries of M which maps onto an open neighborhood of Plow(M). That
is, Plom(M) € P(C[z, 2~']") has homogeneous coordinates which are
linear functions in the coefficients of the Laurent polynomial entries of
M and since a linear function of several variables is an open map Plow
is an open map.

O

The map Pl : P, ,(C[z,27')/GL(Clz, 27]) — P(Clz, z7']V) is
R-equivariant, i.e. both the flow on P, ,x(Clz,27'])/GL:(Clz, 271])
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described in Lemma 12 and the flow of f4 : P(Clz,27']Y) — R re-
stricted to the image of the generalized Pliicker embedding are given
by composing Laurent polynomials with the map z +— e'z. Hence
by Theorem 6 the flow category on P, ,,.(C|z, 271])/GLE(Clz, 271]) is
isomorphic to the subcategory of fa : P(C[z, 27']V) — R consisting of
those critical points and flow lines which lie in the image of Pl. Note
that the object space of C,, ;4 is homeomorphic to Z x G, ,11(C).

Every point [M] € P,,.1(Clz,27Y)/GL.(C[z,27]) determines a
unique algebraic point in LG, ,+4(C) as follows. Recall that a point
in LG, n4x(C) is given by a map S* — G, ,+x(C) together with an ex-
tension D? — G, ,,+x(C) well defined up to homotopy rel S*. First we
label the critical submanifold in £G,, ,1(C)ay consisting of constant
extensions of constant loops to D? by Cj. The other critical subman-
ifolds are then labeled in relation to Cj, i.e. the critical submanifold
on sheet j € 7Z of the universal cover is labeled C;. The preceding
lemma implies that every element of P, ,,x(Cl[z,27'])/GL:(Clz, 271))
determines a unique holomorphic map CP' — G,, ,,+x(C) and hence a
gradient flow line of the action functional from a constant loop at some
point a € G, ,4+x(C) to a constant loop at some b € G, ,,41(C). We lift
this flow to a map R — LG, ,4+4(C) beginning at a € C; = G, ,+1(C)
and then evaluate at zero where j is the unique element of Z such that
multiplying each entry in the N-tuple PI([M]) by 277 gives a collec-
tion of elements of C[z] with no common roots in C. This defines a
continuous bijective map

Inntk Pn,n-i-k(c[za Z_l])/GLSL(C[Za Z_l]) - Z\énm—i-k((c)alg'

It’s clear from the definition that this map is R-equivariant with
respect to the induced flow from f4 : G, 1(C[z,27']) — R on the
left and the gradient flow of the action functional on the right, i.e. on
both sides the flow is given by z — e’z. Therefore by Theorem 6 i, 1
induces a continuous bijective functor

[n,n—i-k : Cn,n-{—k - Cjn7n+k-

It is clear that I, ik : Ob(Cppik) — Ob(CAn’nH) is a homeomorphism
because 7, ,,+1 is continuous and bijective and the object space of Cy, 1
has compact components (i.e. each component is G, ,11(C)).

The Pliicker embedding Pl : G, ,1x(C) — CPN~! also induces an
embedding LPI : LG,, ,+£(C) — LCPY~1 and since m (LG, 1 4£(C)) =
7 (LCPN=1) = 7Z this induces an embedding

LPl: LGy pik(C)) — LCPN-1,
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Chasing through the definitions of the maps involved one sees that we
have the following R-equivariant commutative diagram.

in,nJrk —_

Pn,n+k(c[zv Z_l])/GL;(C[Z, Z_l]) - EGn,n+k(C)alg

Pl LPl

Pin(Clz,271)/C* . LCPV-1,,

The preceding diagram induces the following commutative diagram of
flow categories by Theorem 6.

In,nJrk

Cn7n+k CAn,n«kk

I N

Cin

Cin

where the vertical arrows are inclusion functors induced by the Pliicker
embeddings in the preceding diagram.

One of the results announced in [5] is that the functor I y : C; vy —
C Ain is an isomorphism of categories. In particular, for any a,b €

Ob(C,, n+x) we have a homeomorphism
[17]\[ . MOI"(CL, b)cl,N — MOI(il’N(CL),’i17N(b))C

where Mor(a,b)c, , is a morphism space in the flow category of the
function f4 : P(Clz, 27 ") — R and Mor(iy n(a), i1 n(b))e

AN

_1samor-
AN
—_ —

phism space in the flow category of the action functional on LCPN-1,

[n,n+k . MOI(CL, b)cnmh% — MOl"(in’rH_k(CL), in7n+k(b))cAn _

is simply a restriction of /; ; and hence is a homeomorphism. Therefore

Iynsk i Copgre — C Apip 15 a0 isomorphism of flow categories.

|

One should note that our definition of Mor(a, b) as the space of piece-
wise flow lines on the manifold immediately gives the result of Cohen,
Jones, and Segal announced in [5]. We have seen that

i1n : Pun(Clz,271]))/C* — LCPN-1,,
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is a continuous bijective map whose inverse is discontinuous. However,
restricted to the space of critical submanifolds this map is a homeomor-
phism. Hence by Theorem 6 there is an induced continuous bijective
functor

ll,N . Cl,N — CALN

that is a homeomorphism on the object spaces.

To see that the inverse map on the morphism spaces is contin-
uous fix any two critical points a,b € Ob(Cyg, ) and assume [; €
Mor(a, b)c ,

1,N

ing to [ € Mor(a, b)

is a sequence of piecewise gradient flow lines converg-
. If Iy (1;) did not converge to I y (1), then

Cayn
there would be a sequence of points p; € I }V(lj) that stayed some
finite distance from I; ~(1). But by assumption I; x(p;) approaches
[ and since [ is compact there is a subsequence of I; y(p;) approach-
ing some point I y(p) € [. Hence to show that Ilfjl\,(lj) converges to
I (1) it suffices to show that for every I, y(p) € | and every sequence
of points 1 n(p;) € [; converging to I; n(p), p; converges to p.

Pick any I y(p) € | and assume that I x(p;) € [; is a sequence
converging to I; y(p). Applying the projection map

7 LCPN-1 — cCcpN-t

we have a sequence 7(I1 y(p;)) converging to m(/; n(p)). Since all these
points are algebraic there exist holomorphic maps

h;: CP' — CPN!

and
h:CpP'— cpN-!

such that h;(e*) = 7(I1 n(p;)) and h(e*) = m(I; n(p)). These holo-
morphic maps are specific parameterizations for segments of the piece-
wise gradient flow lines 7(l;) and n(l) and because of the way the
parameterizations were chosen h; approaches h on S! (the image of
e’s) as j — oo. In other words, h is a “bubble” in the limit of h;
where the bubbling can only occur at 0 and oo because the 7(l;) are
all piecewise gradient flow lines of the action functional. Since these
maps are holomorphic h;(z) = (pj(z) : --- : p)(2)) for every j € Zy
and h(z) = (p'(2) : -+ : pY(z)) where the entries are polynomials with
no root in common in C. As elements of P(Clz, z71]V)

(Dj(2) -9} (2) = 2" (M (2) - M (2))
as j — oo where m € Z is determined by what sort of bubbling occurs.
After multiplying by an appropriate power of z, determined by what
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sheet in the universal cover I; y(p) lies, we have p; and p. Hence p; — p
as j — o0.

4. FLOER HoMOTOPY TYPE AND FLOER COHOMOLOGY

Definition 14. Fizing any critical submanifold Cy C Ob(Cy,) we de-
fine the Floer homotopy type of fa : Gnnik(Clz, 271]) — R (following
[3]) to be

lim{(BCy,|5") ™" Yeers

Bel
where

I ={B a component of Ob(Cy,)|W (Cy, B) is a manifold}

and

Iz ={C a component of Ob(Cs,)|Co < C and W(C, B) is a manifold}
and ve is the normal bundle of

BCp, |5 < BC, 5.
The maps in the above systems are all inclusion maps.

Lemma 15. P € G, ,11(Clz,27Y]) = Vonak(Clz, 27))/GL,(C) is a
critical point of fa : Gnnik(Clz,27Y) — R if and only if there exists
some M € V,,.x(Clz,27Y]) lying above P such that the ith row of
M consists of entries of the form a;;z™ for some a;; € C and some
m; € 7.

Proof:

The critical points of fa : Gy, 1x(C[z, 27!]) — R are the fixed points
of the gradient flow. Recall that this gradient flow is given by com-
posing the Laurent polynomial entries of M € V,,,,1x(C[z, 27!]) with
the function z — e'z. Assume that M € V}, ,41x(C[z,27]) is of the
form described above. Then composing the entries of M with z — e’z
multiplies the ith row by e™!. Hence, the equivalence class does not
change in V,, ,.x(Clz, 27'])/GL,(C) = Gy, i (Cl2, 271]).

Now assume that P € G, ,11(Clz, 27]) is fixed point. Choose M €
Vinik(Clz, 271]) lying above P and in reduced row echelon form. Since
the rows of M (e'z) span the same plane as the rows of M(z) the first
row of M(e'z) is a multiple of the first row of M(z). Thus the first row
of M(z) must consist of entries of the form a;;2"" for some m; € Z.
By repeating the argument for rows 2,3,... ,n we see that every row
of M must consist of entries of the form a;;2™ for some m, € Z.

O
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The preceding lemma shows that the critical submanifolds of f4 :
Grnik(Clz,271]) — R are indexed by n-tuples of integers (my, ... ,m,).
We will denote these critical submanifolds by Cn, ... m,). Ifmy =mg =

© = My, then Cuyy. my) = Grngk(C). In general, Cpp, . m,) is a
product of Grassmann manifolds, e.g. if [ of the integers (my, ... ,m,)
are the same, then Cpy,, . m,) Will have Gi,4x(C) as a factor. From
this point on we will fix Cy = C(gy,... 0)-

Theorem 16. The Floer homotopy type of fa : Gnnix(Clz,271]) = R
has

Gn((coo) - Gn(coo)—(n—l—k)'yn — Gn((coo)—2(n+k)vn - ...
as a cofinal system where 7y, denotes the tautological n-plane bundle
over G, (C*).
Proof:

Let Cj = C; ;.. 5 for all j € Z. Then for j < 0 we have BCy, |¢? =
W(Co,C;) = Grnir(Clz, 27 J105+L00) where C|z, z77+10} de-
notes the collection of all Laurent polynomials of the form

a;? +aj1 2T a2 + ag.
The normal bundle of the embedding BCy, |gf — BCy, |g;” is m(n+k)y,
for all m € Z . Hence {(BCfA\g‘;)_”C}cgcj has

G (Clz, Z_l]{j’j+1""’0}) — Gn(Clz, Z—l]{j,jJrl,...,0})—(n+k)% - ...

as a cofinal system.
Taking a direct limit 7 — —oo we see that

Gal(C) = G(C) "0 G (C) 2 kI .
is a cofinal system of the Floer homotopy type.
O

If we apply H* to the above pro-spectrum and use the Thom Iso-
morphism Theorem we get the following direct system.

n+k n+k
The direct limit of this system is
H* (G, (C%))[e, ™).

The reader should note that the above cohomology groups are graded
over Z and periodic with period 2(n + k) where n + k is the minimal
Chern number of G,,,1x(C). This is consistent with the grading on
Floer’s cohomology groups.
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For the case n = 1 Theorem 9 implies that the flow category Cy, is
a compactification of the flow category of the action functional on the
universal cover of LCP*. We define the Floer homotopy type of the
action functional to be the Floer homotopy type of Cs,. Looking at
the proof of Theorem 16 we see that the Floer homotopy type of the
action functional on the universal cover of LCP* is

CP>® — (CP>®)~U+hm  (cpe)=20+om ...

where v, denotes the Hopf line bundle over CP>.
The Floer cohomology ring of CP* is well-known [14].

Theorem 17. The Floer cohomology ring of CP* is

Zlp,q,q7"]
<ptht=gq,q¢lg=1>

HF*(CP*) =
where p has degree 2.
Note that H F*(CP*) is isomorphic to
H(CP)[(e)” ) 2 Zfer, e )

One reason that H EF*(CP*) is usually written as in the above theorem
is to stress the 2N-periodicity of the Floer cohomology groups where
N = 1+ k is the minimal Chern number of CP*. Another reason is
that it exhibits the action of m(CP*) on H F*(CP¥).

72(CP*) = m (LCP¥) is the group of deck transformations of E(\:TDk
This action induces an action on the Floer chain complex. A € 7y(CP¥)
sends a critical point of Maslov index p to a critical point of Maslov
index j1+2c;(A) (see [14] section 10.1). If A is a generator of my(CP¥),
then the induced action of A on the Floer cohomology ring is multipli-
cation by either ¢ or ¢~* in Theorem 17.

The group of deck transformations 5 (CP*) sends critical points to
critical points and gradient flow lines to gradient flow lines. Thus there
is an induced action of my(CP*) on the flow category of the action
functional on the universal cover of LCP*. This action has the effect
of reindexing the critical submanifolds in Definition 14, but other than
that it does not change the Floer homotopy type. In particular, we see
that the Floer homotopy type of the action functional on the universal
cover of LCP* is independent of the basepoint chosen in Definition 14.
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