
MULTICOMPLEXES AND SPECTRAL SEQUENCES

DAVID E. HURTUBISE

Abstract. In this note we present some algebraic examples of multicomplexes
whose differentials differ from those in the spectral sequences associated to the
multicomplexes. The motivation for constructing examples showing the algebraic
distinction between a multicomplex and its associated spectral sequence comes from
the author’s work on Morse-Bott homology with A. Banyaga [1].

1. Introduction

Let R be a principal ideal domain. A first quadrant multicomplex X is a bigraded
R-module {Xp,q}p,q∈Z+ with differentials

di : Xp,q → Xp−i,q+i−1 for all i = 0, 1, . . .

that satisfy ∑

i+j=n

didj = 0 for all n.

A first quadrant multicomplex such that di = 0 for all i ≥ 2 is called a double
complex (or a bicomplex). For the basic properties of multicomplexes we refer the
reader to [2] and [5].

An Ek first quadrant spectral sequence is a sequence of bigraded R-modules
{Er

s,t}s,t∈Z+ with differentials

dr : Er
s,t → Er

s−r,t+r−1

such that for all r ≥ k there is a given isomorphism H(Er) ≈ Er+1 (see Section 2).
Every first quadrant multicomplex determines an E0 first quadrant spectral sequence.
However, not every first quadrant spectral sequence comes from a multicomplex.

Moreover, the differentials dr in the spectral sequence associated to a first quadrant
multicomplex are in general different from the homomorphisms induced by the dif-
ferentials di in the multicomplex. (Note that using the term “differential” to describe
the homomorphisms di in a multicomplex is misleading since there is no guarantee
that (di)

2 is zero.) The purpose of this note is to demonstrate this distinction by
presenting explicit algebraic examples of multicomplexes where the differential dr in
the associated spectral sequence is different than the homomorphism induced by dr.
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The motivation for constructing examples that show the distinction between a
multicomplex and its associated spectral sequence comes from the author’s work on
Morse-Bott homology with A. Banyaga and the discovery that the Morse-Bott-Smale
chain complex is in fact a multicomplex. For more details see the introduction to [1].

2. The spectral sequence associated to a filtered chain complex

In this section we clarify the meaning (and the bigrading) of the isomorphism
H(Er) ≈ Er+1, and we recall the definition of the differentials dr : Er

s,t → Er
s−r,t+r−1

in an Ek spectral sequence coming from a filtered chain complex. This section follows
Chapter 9 of [6].

An Ek spectral sequence consists of a sequence of bigraded modules {Er
s,t} over

a principal ideal domain R for r ≥ k, with differentials dr : Er
s,t → Er

s−r,t+r−1 that
satisfy (dr)2 = 0. If we define

Z̄r
s,t = ker(dr : Er

s,t → Er
s−r,t+r−1)

B̄r
s,t = im(dr : Er

s+r,t−r+1 → Er
s,t)

then B̄r
s,t ⊆ Z̄r

s,t, and by definition there is a given isomorphism Er+1
s,t ≈ Z̄r

s,t/B̄
r
s,t.

Let (C∗, ∂) be a filtered chain complex that is bounded below by s = 0. That is,
suppose that we have a filtration

F0C∗ ⊂ · · · ⊂ Fs−1C∗ ⊂ FsC∗ ⊂ Fs+1C∗ ⊂ · · ·

where FsC∗ is a chain subcomplex of C∗ for all s, i.e. ∂(FsCs+t) ⊆ FsCs+t−1 for all t.
The grading s is called the filtered degree, the grading t is called the complemen-
tary degree, and the sum s + t is called the total degree. The filtration is said to
be convergent if ∩sFsC∗ = 0 and ∪sFsC∗ = C∗. Define

Zr
s,t = {c ∈ FsCs+t| ∂c ∈ Fs−rCs+t−1}

Z∞
s,t = {c ∈ FsCs+t| ∂c = 0}.

The bigraded R-modules in the spectral sequence associated to the filtration are
defined to be

Er
s,t = Zr

s,t

/(
Zr−1

s−1,t+1 + ∂Zr−1
s+r−1,t−r+2

)

E∞
s,t = Z∞

s,t

/(
Z∞

s−1,t+1 + (∂Cs+t+1 ∩ FsCs+t)
)

,
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where A + B denotes the free abelian group generated by the elements of A and B,
and the differential dr : Er

s,t → Er
s−r,t+r−1 is defined by the following diagram.

Zr
s,t

∂ //

��

Zr
s−r,t+r−1

��

Zr
s,t

/(
Zr−1

s−1,t+1 + ∂Zr−1
s+r−1,t−r+2

) dr
// Zr

s−r,t+r−1

/(
Zr−1

s−r−1,t+r + ∂Zr−1
s−1,t+1

)

The R-module Er
s,t is isomorphic to Z̄r−1

s,t /B̄r−1
s,t via an isomorphism given by the

Noether Isomorphism Theorem.

For a proof of the following theorem see Section 9.1 of [6].

Theorem 1. If the filtration on the chain complex (C∗, ∂) is convergent and bounded
below, then the above spectral sequence converges to the bigraded R-module GH∗(C∗, ∂)
associated to the filtration FsH∗(C∗, ∂) ≡ im[H∗(FsC∗, ∂) → H∗(C∗, ∂)]. That is,

E∞
s,t ≈

⋂

r

Zr
s,t

/⋃

r

(
Zr−1

s−1,t+1 + ∂Zr−1
s+r−1,t−r+2

)
≈ GH∗(C∗, ∂)s,t

where GH∗(C∗, ∂)s,t ≡ FsHs+t(C∗, ∂)/Fs−1Hs+t(C∗, ∂).

3. The spectral sequence associated to a multicomplex

A first quadrant multicomplex ({Xp,q}p,q∈Z+, {di}i∈Z+) can be assembled to form a
filtered chain complex ((CX)∗, ∂) by summing along the diagonals. That is, suppose
that we are given a bigraded R-module {Xp,q}p,q∈Z+ and homomorphisms

di : Xp,q → Xp−i,q+i−1 for all i = 0, 1, . . .

that satisfy

∑

i+j=n

didj = 0 for all n.
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...
...

...
...

X0,3

d0

��

X1,3

d0

��

d1oo X2,3

d0

��

d1oo X3,3

d0

��

d1oo · · ·

X0,2

d0

��

X1,2

d0

��

d1oo X2,2

d0

��

d1oo
d2RRRRR

RR

hhRRRRRRRR

X3,2

d0

��

d1oo
d2RRRRR

RR

hhRRRRRRRR

· · ·

X0,1

d0

��

X1,1

d0

��

d1oo X2,1

d0

��

d1oo
d2RRRRR

RR

hhRRRRRRRR

X3,1

d0

��

d1oo
d2RRRRR

RR

hhRRRRRRRR
d3

ff

· · ·

X0,0 X1,0
d1oo X2,0

d1oo
d2RRRRR

RR

hhRRRRRRRR

X3,0
d1oo

d2RRRRR
RR

hhRRRRRRRR
d3

ff

· · ·

If we define

(CX)n ≡
⊕

p+q=n

Xp,q

and ∂n = d0⊕· · ·⊕dn for all n ∈ Z+, then the above relations imply that ∂n◦∂n+1 = 0.

· · · X3,0
d0 //

d1

%%JJJJJJJJJ

d2

77
77

77

��7
77

77
77

7
d3

��

0

· · · X2,1

⊕

d0 //

d1

%%JJJJJJJJJ

d2

77
77

77

��7
77

77
77

7

X2,0

⊕

d0 //

d1

%%JJJJJJJJJ

d2

77
77

77

��7
77

77
77

7

0

· · · X1,2

⊕

d0 //

d1

%%JJJJJJJJJ
X1,1

⊕

d0 //

d1

%%JJJJJJJJJ
X1,0

⊕

d0 //

d1

%%JJJJJJJJJ
0

· · · X0,3

⊕

d0 // X0,2

⊕

d0 // X0,1

⊕

d0 // X0,0

⊕

d0 // 0

· · · (CX)3

‖

∂3 // (CX)2

‖

∂2 // (CX)1

‖

∂1 // (CX)0

‖

∂0 // 0

‖

Moreover, the chain complex ((CX)∗, ∂) has an obvious filtration given by

Fs(CX)n ≡
⊕

p+q=n
p≤s

Xp,q.

Note that the restriction q ≤ s determines a second filtration on a double complex,
but it does not determine a filtration on a general multicomplex.
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The bigraded module associated to the above filtration is

G((CX)∗)s,t = Fs(CX)s+t/Fs−1(CX)s+t ≈ Xs,t

for all s, t ∈ Z+, and the E1 term of the associated spectral sequence is given by

E1
s,t = Z1

s,t

/(
Z0

s−1,t+1 + ∂Z0
s,t+1

)

where
Z1

s,t = {c ∈ Fs(CX)s+t| ∂c ∈ Fs−1(CX)s+t−1}
and

Z0
s,t = {c ∈ Fs(CX)s+t| ∂c ∈ Fs(CX)s+t−1} = Fs(CX)s+t.

The group Z1
s,t/Z

0
s−1,t+1 is the group of (s + t)-cycles in the quotient chain complex

Fs(CX)∗/Fs−1(CX)∗, and the group of (s + t)-boundaries in Fs(CX)∗/Fs−1(CX)∗ is

∂Z0
s,t+1

/
(Z0

s−1,t+1 ∩ ∂Z0
s,t+1) ≈

(
Z0

s−1,t+1 + ∂Z0
s,t+1

) /
Z0

s−1,t+1

where the isomorphism is given by the Noether Isomorphism Theorem. Therefore,

E1
s,t = Z1

s,t

/(
Z0

s−1,t+1 + ∂Z0
s,t+1

)

≈
Z1

s,t/Z
0
s−1,t+1(

Z0
s−1,t+1 + ∂Z0

s,t+1

)
/Z0

s−1,t+1

≈
Z1

s,t/Z
0
s−1,t+1

∂Z0
s,t+1

/
(Z0

s−1,t+1 ∩ ∂Z0
s,t+1)

and we see that E1
s,t ≈ Hs+t(Xs,∗, d0) where (Xs,∗, d0) denotes the chain complex

· · · d0 // Xs,3
d0 // Xs,2

d0 // Xs,1
d0 // Xs,0

d0 // 0.

The differential d1 on the E1 term of the spectral sequence is defined by the diagram

Z1
s,t

∂ //

��

Z1
s−1,t

��

Z1
s,t

/(
Z0

s−1,t+1 + ∂Z0
s,t+1

) d1
// Z1

s−1,t

/(
Z0

s−2,t+1 + ∂Z0
s−1,t+1

)

and it is natural to ask whether or not there is a connection between the differential
d1 : E1

s,t → E1
s−1,t in the spectral sequence and the homomorphism d1 : Xs,t → Xs−1,t

in the multicomplex.
It is an easy exercise to show that the relations

d0d1 + d1d0 = 0

d0d2 + d1d1 + d2d0 = 0

imply that the homomorphism d1 induces a differential d̄1 : E1
s,t → E1

s−1,t, i.e. (d̄1)
2 =

0. Moreover, one can show that the differential d̄1 coincides with the differential
d1 : E1

s,t → E1
s−1,t. This is a standard fact for double complexes, and the proof for
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double complexes carries over to multicomplexes (see for instance Section 14 of [3],
or Section 3.2.1 of [4]). Thus, we have the following.

Theorem 2. Let ({Xp,q}p,q∈Z+, {di}i∈Z+) be a first quadrant multicomplex and ((CX)∗, ∂)
the associated assembled chain complex. Then the E1 term of the spectral sequence
associated to the filtration of (CX)∗ determined by the restriction p ≤ s is given by
E1

s,t ≈ Hs+t(Xs,∗, d0) where (Xs,∗, d0) denotes the following chain complex.

· · · d0 // Xs,3
d0 // Xs,2

d0 // Xs,1
d0 // Xs,0

d0 // 0

Moreover, the d1 differential on the E1 term of the spectral sequence is induced from
the homomorphism d1 in the multicomplex.

4. Multicomplexes where dr 6= dr

Theorem 2 should sound familiar to anyone acquainted with double complexes.
However, the examples in this section show that Theorem 2 does not generalize to the
higher differentials in the spectral sequence associated to a multicomplex. In fact, the
pattern suggested by Theorem 2 breaks down when r = 2. That is, the differential dr

in the spectral sequence is not necessarily induced from the homomorphism dr when
r ≥ 2. To paraphrase Section 11 of [2], when r ≥ 2 the differential dr is induced from
dr only on those classes which contain elements x such that di(x) = 0 for all i < r
“which rarely happens”.

Example 1 (A double complex with d2 6= 0).

It is well known that the spectral sequence associated to a double complex does
not necessarily degenerate at E2. That is, there is no guarantee that dr = 0 for r ≥ 2.
This first example is a small algebraic example that demonstrates this phenomena.

Consider the following first quadrant double complex

0
d0

��

0
d0

��

d1oo 0
d0

��

d1oo

< x0,1 >

d0

��

< x1,1 >

d0

��

d1oo 0
d0

��

d1oo

0 < x1,0 >
d1oo < x2,0 >

d1oo

where < xp,q > denotes the free abelian group generated by xp,q, the groups Xp,q = 0
for p + q > 2, and the homomorphisms d0 and d1 satisfy the following: d0(x1,1) =
x1,0, d1(x1,1) = x0,1, and d1(x2,0) = x1,0. The conditions (d0)

2 = (d1)
2 = 0 and

d0d1 + d1d0 = 0 are satisfied trivially, and the assembled chain complex associated to
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this double complex is as follows.

· · · 0
d0 //

d1

$$HH
HH

HHH
HHH 0

· · · 0

⊕
d0 //

d1

##HH
HH

HH
HH

HH
< x2,0 >

⊕
d0 //

d1

&&MMMMMMMMMMM 0

· · · 0

⊕

d0 //

d1

##HHHHHHHHHHH < x1,1 >

⊕

d0 //

d1

&&MMMMMMMMMMM
< x1,0 >

⊕

d0 //

d1

##HHH
HH

HH
HHH

0

· · · 0

⊕

d0 // 0

⊕

d0 // < x0,1 >

⊕

d0 // 0

⊕

d0 // 0

· · · 0

‖

∂3 // (CX)2

‖

∂2 // (CX)1

‖

∂1 // 0

‖

∂0 // 0

‖

The homology Hn((CX)∗, ∂) of the assembled chain complex is trivial for all n ∈ Z+

because the kernel of ∂2 is trivial and both x0,1 and x1,0 are in the image of ∂2 = d0+d1:

∂2(x2,0) = x1,0

∂2(x1,1 − x2,0) = x0,1.

However, the E1 term of the associated spectral sequence is

0 0
d1oo 0

d1oo

< x0,1 > 0
d1oo 0

d1oo

0 0
d1oo < x2,0 >

d1oo

where E1
s,t = 0 for all s + t > 2, and the E2 term is isomorphic to the E1 term.

Since Hn((CX)∗, ∂) = 0 for all n ∈ Z+, Theorem 1 implies that the differential d2

in the spectral sequence must be nonzero, even though the homomorphism d2 in the
multicomplex is zero, i.e. d2 6= 0 is not induced from d2 = 0.

To compute the differential d2 : E2
2,0 → E2

0,1 we consider the following diagram

Z2
2,0

∂ //

��

Z2
0,1

��
Z2

2,0

/(
Z1

1,1 + ∂Z1
3,0

) d2
// Z2

0,1

/(
Z1
−1,2 + ∂Z1

1,1

)

where
Z2

2,0 =< x1,1 − x2,0 >, Z2
0,1 =< x0,1 >
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and Z1
1,1 = Z1

3,0 = Z1
−1,2 = 0. Since ∂2(x1,1 − x2,0) = x0,1, we see that the E3 term of

the spectral sequence is trivial, and we have verified Theorem 1 in this example.
There is one more subtle point to note in this example: although E1

2,0 and E2
2,0 are

isomorphic, they have different generators. That is,

E1
2,0 = Z1

2,0

/(
Z0

1,1 + ∂Z0
2,1

)
≈ < x2,0 >

whereas

E2
2,0 = Z2

2,0

/(
Z1

1,1 + ∂Z1
3,0

)
≈ < x1,1 − x2,0 > .

This is consistent with the definition of a spectral sequence which states that “there
is a given isomorphism H(Er) ≈ Er+1” [6].

Example 2 (A double complex with some dr 6= 0 for r arbitrarily large).

The preceeding example can be generalized to produce a double complex such that
a differential dr in the associated spectral sequence is nonzero for r arbitrarily large.
To see this pick any r ∈ Z+ with r ≥ 2, and consider the following first quadrant
double complex

0

d0

��

0

d0

��

d1oo 0

d0

��

d1oo 0

d0

��

d1oo · · ·d1oo 0

d0

��

d1oo

< x0,r−1 >

d0

��

< x1,r−1 >

d0

��

d1oo 0

d0

��

d1oo 0
d1oo

d0

��

· · ·d1oo 0
d1oo

d0

��
0

d0
��

< x1,r−2 >
d1oo

d0
��

< x2,r−2 >

d0
��

d1oo 0

d0
��

d1oo · · ·d1oo 0
d1oo

d0
��

...

d0

��

...
...

d0

��

...

d0

��

...

d0

��

...

d0

��
0

d0

��

· · ·d1oo 0

d0

��

d1oo < xr−2,1 >

d0

��

d1oo < xr−1,1 >

d0

��

d1oo 0

d0

��

d1oo

0 · · ·d1oo 0
d1oo 0

d1oo < xr−1,0 >
d1oo < xr,0 >

d1oo

where the groups Xp,q = 0 for p + q > r and the homomorphisms d0 and d1 satisfy
the following for p + q = r: d0(xp,q) = xp,q−1 and d1(xp,q) = xp−1,q. The conditions
(d0)

2 = (d1)
2 = 0 and d0d1 + d1d0 = 0 are satisfied trivially, and the assembled chain

complex associated to this double complex is as follows.
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· · · 0
d0 //

d1

%%JJJJJJJJJJ 0

· · · 0

⊕
d0 //

d1

$$JJJJJJJJJJJ
< xr,0 >

⊕
d0 //

d1

''PPPPPPPPPPPP 0

· · · 0

⊕

d0 //

d1

$$HH
HHH

HHH
HH

HHH
< xr−1,1 >

⊕

d0 //

d1

''OOOOOOOOOOOOOOO
< xr−1,0 >

⊕

d0 //

d1

$$HHHHHHHHHHH 0

...
...

...
...

· · · 0

⊕

d0 //

d1

$$JJJJJJJJJJJJ < x1,r−1 >

⊕

d0 //

d1

''PPPPPPPPPPPP
< x1,r−2 >

⊕

d0 //

d1

$$JJJJJJJJJJJ 0

⊕

· · ·

· · · 0

⊕

d0 // 0

⊕

d0 // < x0,r−1 >

⊕

d0 // 0

⊕

· · ·

· · · 0

‖

∂r+1 // (CX)r

‖

∂r // (CX)r−1

‖

∂r−1 // 0

‖

· · ·
As in the previous example, the homology Hn((CX)∗, ∂) of the assembled chain

complex is trivial for all n ∈ Z+ because the kernel of ∂r is trivial and all the gener-
ators x0,r−1, x1,r−2, . . . , xr−1,0 of (CX)r−1 are in the image of ∂r. The E1 term of the
associated spectral sequence has E1

0,r−1 = < x0,r−1 >, E1
r,0 = < xr,0 >, and E1

s,t = 0
for all other values of s and t. Moreover, E1 ≈ E2 ≈ · · · ≈ Er−1. Once again, Theo-
rem 1 implies that the differential dr must be nonzero (even though dr = 0), and the
diagram

Zr
r,0

∂ //

��

Zr
0,r−1

��

Zr
r,0

/(
Zr−1

r−1,1 + ∂Zr−1
2r−1,−r+2

) dr
// Zr

0,r−1

/(
Zr−1
−1,r + ∂Zr−1

r−1,1

)

can be used to show that dr is surjective. (Note that Zr
r,0 is generated by x1,r−1 −

x2,r−2 + · · · + (−1)r−1xr,0.)

Example 3 (Multicomplexes with dr 6= 0 and di = 0 for all i ≥ 2).

The preceeding examples show that the spectral sequence associated to a multi-
complex with dr = 0 for all r ≥ 2 may not degenerate at E2 (or even Er where r is
arbitrarily large). These examples can be modified to show that there exist multi-
complexes where dr 6= 0 for r arbitrarily large but the associated spectral sequences
degenerate at E2.
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We begin with a multicomplex where d2 6= 0 but its associated spectral sequence
degenerates at E2. Consider the following first quadrant multicomplex

0
d0

��

0
d0

��

d1oo 0
d0

��

d1oo

< x0,1 >

d0

��

< x1,1 >

d0

��

d1oo 0
d0

��

d1oo

0 < x1,0 >
d1oo < x2,0 >

d1oo
d2VVVVVV

VVV

kkVVVVVVVVVV

where the groups Xp,q = 0 for p+q > 2, the homomorphisms d0 and d1 are the same as
in Example 1, and d2(x2,0) = x0,1. The homomorphisms di : Xp,q → Xp−i,q+i−1 satisfy∑

i+j=n didj = 0 for all n trivially, and the assembled chain complex associated to
this multicomplex is as follows.

· · · 0
d0 //

d1

$$HH
HH

HHH
HHH 0

· · · 0

⊕
d0 //

d1

##HH
HH

HH
HH

HH
< x2,0 >

⊕
d0 //

d2

<<
<<

<

<<

��<
<<

<<
<<

<

d1

&&MMMMMMMMMMM 0

· · · 0

⊕

d0 //

d1

##HHHHHHHHHHH < x1,1 >

⊕

d0 //

d1

&&MMMMMMMMMMM
< x1,0 >

⊕

d0 //

d1

##HHH
HH

HH
HHH

0

· · · 0

⊕

d0 // 0

⊕

d0 // < x0,1 >

⊕

d0 // 0

⊕

d0 // 0

· · · 0

‖

∂3 // (CX)2

‖

∂2 // (CX)1

‖

∂1 // 0

‖

∂0 // 0

‖

Referring back to Example 1 we see that the diagram

Zr
2,0

∂ //

��

Zr
2−r,r−1

��

Zr
2,0

/(
Zr−1

1,1 + ∂Zr−1
r+1,−r+2

) dr
// Zr

2−r,r−1

/(
Zr−1

1−r,r + ∂Zr−1
1,1

)

shows that dr = 0 for all r ≥ 2 since ∂2(x1,1 − x2,0) = 0, and hence the associated
spectral sequence degenerates at E2.

To generalize this example to produce a multicomplex where dr 6= 0 for r arbitrar-
ily large but the associated spectral sequence still degenerates at E2 we start with
the double complex from Example 2 and add a single homomorphism dr defined by
dr(xr,0) = (−1)rx0,r−1. Further details are left to the reader.
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Example 4 (A multicomplex with d2 6= 0, d2 6= 0 and d2 6= d2).

Consider the following first quadrant multicomplex

0
d0

��

0
d0

��

d1oo 0
d0

��

d1oo

< x0,1, x̃0,1 >

d0

��

< x1,1 >

d0

��

d1oo 0

d0

��

d1oo

0 < x1,0 >
d1oo < x2,0, x̃2,0 >

d1oo
d2WWWWW

WWW

kkWWWWWWWWWW

where the groups Xp,q = 0 for p + q > 2, and the homomorphisms di for i = 0, 1, 2
satisfy the following.

d0(x1,1) = x1,0

d1(x1,1) = x0,1

d1(x2,0) = x1,0

d1(x̃2,0) = 0
d2(x̃2,0) = x̃0,1

d2(x2,0) = 0

The homomorphisms di : Xp,q → Xp−i,q+i−1 satisfy
∑

i+j=n didj = 0 for all n trivially,
and the assembled chain complex associated to this multicomplex is as follows.

· · · 0
d0 //

d1

%%LLLLLLLLLLL 0

· · · 0

⊕

d0 //

d1

%%KKKKKKKKKKKK < x2,0, x̃2,0 >

⊕

d0 //

d1

((QQQQQQQQQQQQQ

d2

DD
DD

D

DDD

!!DD
DD

DD
DD

DD

0

· · · 0

⊕

d0 //

d1

%%KKKKKKKKKKKKK < x1,1 >

⊕

d0 //

d1

((QQQQQQQQQQQQQ
< x1,0 >

⊕

d0 //

d1

%%KKKKKKKKKKKK 0

· · · 0

⊕

d0 // 0

⊕

d0 // < x0,1, x̃0,1 >

⊕

d0 // 0

⊕

d0 // 0

· · · 0

‖

∂3 // (CX)2

‖

∂2 // (CX)1

‖

∂1 // 0

‖

∂0 // 0

‖
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The homology Hn((CX)∗, ∂) of the assembled chain complex is trivial for all n ∈ Z+,
the E1 term of the associated spectral sequence is

0 0
d1oo 0

d1oo

< x0,1, x̃0,1 > 0
d1oo 0

d1oo

0 0
d1oo < x2,0, x̃2,0 >

d1oo

where E1
s,t = 0 for all s + t > 2, and the E2 term is isomorphic to the E1 term. The

image of the homomorphism induced by d2 does not include the class determined by
x0,1. However, the differential d2 in the spectral sequence is onto. Therefore, d2 is
not the same as the homomorphism induced by d2.

Note that additional examples can be constructed where the homology is nontrivial
by adding more generators. Examples 1, 2, and 4 were constructed to have trivial
homology in order to make it easy to see that dr is surjective. Also, it should be
clear at this point how to construct examples where dr is not induced from dr for
several different values of r: simply combine the above examples using more (disjoint)
generators.

d d2
2

“We are not

who we are.”

Acknowledgments: I would like to thank Jim Stasheff and other members of the
University of Pennsylvania’s Deformation Theory Seminar, in particular Tom Hunter
and Ron Umble, for introducing me to multicomplexes and pointing out that the
Morse-Bott-Smale chain complex is in fact a multicomplex.
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