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The project

Construct a “singular” chain complex analogous to the
Morse-Smale-Witten chain complex for Morse-Bott functions.

Question: Why would anyone want to do this?

After all, we can always perturb a smooth function to get a
Morse-Smale function. Also, a Morse-Bott function determines a
filtration, and hence, a spectral sequence.
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Perturbations

1. If f: M — R is a Morse-Bott function, study the
Morse-Smale-Witten complex as ¢ — 0 of

l
h=f+e¢ ijfj
=1

2. If h: M — R is a Morse-Smale function, study the
Morse-Smale-Witten complex of eh : M — R as ¢ — 0.
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Equivariant homology

If 7: E — B is a smooth fiber bundle with fiber F" and f is a Morse
function on B, then f o7 is a Morse-Bott function with critical
submanifolds diffeomorphic to F.

F——F
iw
B-1.R
In particular, if G is a Lie group acting on M and 7w : EG — BG is

the classifying bundle for GG, then this might be useful for studying
equivariant homology HE (M) := H,(EG xg M).

M——>FEGxagM
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Morse-Bott functions
Definition
A smooth function f : M — R on a smooth manifold M is called a
Morse-Bott function if and only if Cr(f) is a disjoint union of
connected submanifolds, and for each connected submanifold
B C Cr(f) the normal Hessian is non-degenerate for all p € B.

Lemma (Morse-Bott Lemma)

Let f: M — R be a Morse-Bott function, and let B be a critical
submanifold. For any p € B there is a local chart of M around p and
a local splitting of the normal bundle v.(B) = v (B) & v, (B)
identifying a point x € M in its domain with

(u,v,w) € B® v} (B) ® vy (B) such that within this chart f
assumes the form

fla) = fu,v,w) = f(B) +[vf” —wl”.
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Stable/Unstable manifolds

Pick a Riemannian metric g on M, and let ¢, be the flow of —V f.
For p € Cr(f) the stable manifold 1W*(p) and the unstable
manifold W*"(p) are defined as follows.

We(p) = {re M| tlgn () = p} (f decreases to p)
Wt(p) = {ze M| tl}r_n oi(z) =p}  (f increases to p)
Definition

If f: M — R is a Morse-Bott function, then the stable and unstable
manifolds of a critical submanifold B are defined to be

w(B) = [J W)
pEB

weB) = |J W)
peEB
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Theorem (Stable/Unstable Manifold Theorem)

The stable and unstable manifolds W*(B) and W*"(B) are the
surjective images of smooth injective immersions E* : v (B) — M
and E~ : v, (B) — M. There are smooth endpoint maps

0+ : W3(B) — B and 0_ : W"(B) — B given by

O+ (z) = limy—yo0 i () and O—(x) = limy—_ oo 1(x) which when
restricted to a neighborhood of B have the structure of locally trivial
fiber bundles.

Definition
The index of B is the dimension of v, (B).

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Introduction and Definitions Equivariant homology
Morse-Bott functions

Stable/Unstable manifolds
Morse-Bott-Smale functions

Morse-Bott-Smale functions

Definition (Morse-Bott-Smale Transversality)

A function f: M — R is said to satisfy the Morse-Bott-Smale
transversality condition with respect to a Riemannian metric g on
M if and only if f is Morse-Bott and for any two connected critical
submanifolds B and B’, W"(p) intersects W*(B’) transversely for all
p € B, i.e. W(p) h W$(B’).

[Zhou] Given a Morse-Bott function f : M — R it may not be
possible to pick a Riemannian metric for which f is M-B-S. However,
it is always possible to find a Morse-Bott-Smale pair (f,g), where
W(B;) h W#(B;j) for all 4,j and the maps

0. o_
W(Biu Biz) XB W(Biz—u Biz) = Biz — W(Biz’ Biz+1)

.XB

ig i—1

are transverse for all (i1,...,%41).
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Counterexample [Latschev]

Consider the function h : T2 — [—6,0] given by

h(p, 1) = —(2 4 cos 2¢)(1 4 cos )

for (¢,v) € [0,2m) x [0, 27).

The mbsimurm Va6 ) 4de&iminds8 Chieical Sbmanifofd 6 irhension
one: By = {(¢,m)| ¢ €[0,2m)}, and there are two discrete minima
(0,0) and (7,0) and two discrete saddle points (7/2,0) and
(37/2,0). There is no metric such that W*(p) h W*((x/2,0)) for

p € B; because both W"(p) and W*((7/2,0)) are one dimensional.
However, it is possible to pick a metric such that —h is
Morse-Bott-Smale.
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Dimensions, index, and coindex

Lemma

If f satisfies the Morse-Bott-Smale transversality condition, B is a
critical submanifold of dimension b, the index of B is

Ap = dim v, (B), and the coindex of B is X% = dim v (B), then

m = b+Ag+Ap
dim W*(B) = b+ Ap
dim WH(B') = b+ Ny =m — \p
dim W(B,B') = Ag—Ap+b (fW(B,B)#0),

where m = dim M .

Note: The dimension of W (B, B’) does not depend on the dimension
of the critical submanifold B’.
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Algebraic Structure

Algebraic structure of a Morse-Bott-Smale chain complex

Assume that f: M — R is a Morse-Bott-Smale function and the
manifold M, the critical submanifolds, and their negative normal
bundles are all orientable.

Let C,(B;) be the group of “p-dimensional chains” in the critical
submanifolds of index i. For all kK =0,...,m define the group of
chains of Morse-Bott degree k to be

m

Cr(f) = P Cr—i(B).

=0

The boundary operator is defined as a sum of homomorphisms
0=0y)D - P O,y where 8j : Cp(BZ) — Cp—l—j—l(Bi—j)-
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Algebraic Structure

The Morse-Bott-Smale chain complex

- - = Co(Bs) 0

_ 01(32)‘% Co(By) —2 0

(B) ¢y (By)

- — - C3(By) o, 02(30) % C1(Bo) . Co(Bo) —— —2-0

I Il Il I
—— — () L= 0o f) L= i) — 2= Co(f) —2>0
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Algebraic Structure

The Morse-Bott-Smale multicomplex

| | | |
C3(Bo) <2 C3(B1) <2~ C3(By) <~ C3(Bs) - - -

80 \ 80 \ 80 aO
R ~5,
1o, Q) 16)
Ca(By) <—— Ca(B1) <#(72(32) <~ Cy(B3) - - -
R Ao N0
Ci(Bo) <2 C1(B1) <%= C1(Bo) <2 C1(B3) - - -
1(Bo) 1(B1) 1( 2) 1(B3)
80 80 . 80”_” 83 80
0y TS0

Co(Bo) <2 Co(B1) <A Co(B2) <%= Co(By) - - -
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Algebraic Structure :
gebrai uctu The associated spectral sequence

Different versions of the M-B-S complex

The spectral sequence associated to a M-B-S complex

The Morse-Bott chain complex (Ci(f), 0) is a filtered differential
graded Z-module where the (increasing) filtration is determined by
the Morse-Bott index.

F.Cu(f) = @ Cr—i(By)

i<s
The associated bigraded module G(C,(f)) is given by
G(Ci(f))st = FsCsyt(f)/ Fs—1Cs14(f) = Ci(Bs),
and E' term of the associated spectral sequence is
By & Hoyt(FoCu(f) [Forr Cu(f)) = Hy(By),

where the homology is computed with respect to the boundary
operator on the chain complex FsC.(f)/Fs—1C«(f) induced by
0=0)D - ® Oy, i.e. 0.
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Algebraic Structure

The E' term of the spectral sequence

d d d

Hy(By) <—— H3(B1) <—— Hy(Ba) <—— Hy(Bs)
d1 dy dy

Hi(Bo) <—— Hi(B1) <—— H1(B2) <—— H1(Bs)

d d d
Ho(By) <—— Ho(B1) <—— Ho(B2) <—— Hy(B3)

Note: In general, d; # 01 and 0% # 0. However, di = (01)«. This is
very seldom true for the higher order differentials [Boardman]
[Hurtubise].
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Algebraic Structure

The Austin-Braam de Rham cochain complex ~1995
Let B; be the set of critical points of index i and C% = QJ(B;) the
set of j-forms on B;. Austin and Braam define maps

Oy : O — o

forr =0,1,2,...,m which raise the “total degree” ¢ + j by one.
The map dy = d and 0, is defined using integration along the fiber
for r =1,2,...,m. The maps 0, : VW (B;) — QY"1 B;,) fit
together to form a cochain complex where 0 =39y & - - - ® 9, and

k
Ch(f) = P (By).
=0

Note: Integration along the fiber requires the “fibration condition”
[Zhou], which is a consequence of M-B-S transversality.
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Algebraic Structure

The Austin-Braam M-B-S cochain complex
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Algebraic Structure

Other approaches

“abstract geometric chains” and fibered products
(Fukaya, Ruan, Tian) ~1996

“collections of simplicial complexes”
(Liu and Tian) ~1999

Kuranishi structures, fibered products, and spectral sequences
(Fukaya, Oh, Ohta, Ono) ~2008

“abstract topological chains” and fibered products
(Banyaga Hurtubise) ~2010

currents and homological perturbation theory
(Zhou) ~2022
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Austin-Braam coboundary operator
An example of Morse-Bott cohomology
Fibered Products

Compactified Moduli Spaces

Moduli spaces of gradient flow lines
For any two critical submanifolds B and B’ the flow ¢; induces an
R-action on W*(B) N W*(B’). Let
M(B,B") = W*B)nW?#*(B"))/R
be the quotient space of gradient flow lines from B to B'.
Theorem (Gluing)

Suppose that B, B’, and B" are critical submanifolds such that
W*(B) h W*(B') and W"(B') i W#(B"). In addition, assume that
W (x) h W$(B") for all z € B'. Then for some € > 0, there is an
injective local diffeomorphism

G: M(B,B') xz M(B',B") x (0,¢) = M(B,B")

onto an end of M(B, B"). The gluing maps can be chosen to be
associative.
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Compactified Moduli Spaces

The standard metric

B/

] v

G: M(B,B) xp M(B',B") x (0,¢) - M(B,B")

The parameter t € (0, €) is related to the time to flow (or the
distance) from f~1(f(B’) +¢) to f~1(f(B') —¢).
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Compactified Moduli Spaces

Compactified moduli spaces

Theorem (Compactification)

Assume that f : M — R satisfies the Morse-Bott-Smale
transversality condition. For any two distinct critical submanifolds B
and B’ the moduli space M(B, B’) has a compactification

M(B, B, consisting of all the piecewise gradient flow lines from B
to B’, which is a compact smooth manifold with corners of dimension
AB — Apr + b — 1. Moreover, the beginning and endpoint maps
extend to smooth maps

o_: M(B,B")— B
9, : M(B,B') - B,

where O_ has the structure of a locally trivial fiber bundle.
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A deformed sphere

M(r,p) = M(s,p) ~ S' — {pt}

M(r,p) = M(s,p) =~ [0, 1]
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Compactified Moduli Spaces Fibered Products

The flat torus (Diagram: R. Cohen)

r

v
S

p
T2

p p
r

M(s,p) ~[0,1] 11 [0,1] IT[0, 1] 1T [0, 1]
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Compactified Moduli Spaces

The Austin-Braam coboundary operator

Pulling back along the endpoint map and then apply integration
along the fiber using the beginning point map gives a “pull-push
operation that transports a differential form from B; to B;,.

o — 0.
Biyr =<— M(Bisr, B)) — B;

Definition (Austin-Braam)
The map 0, : ¥ (B;) — QY ~"TY(B;,,.) is defined by

| dw r=20
Orlew) = { (—1)(0)u(@5w) 7 #£0.
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Compactified Moduli Spaces

Integration along the fiber

Let m : E — B be a fiber bundle where B is a closed manifold, a
typical fiber F'is a compact oriented d-dimensional manifold with
corners, and g : OF — B is also a fiber bundle with fiber OF. A
differential form on E may be written locally as

(@) f(x, t) dty, Ndtiy A+ Adt;,

where ¢ is a form on B, x are coordinates on B, and the ¢; are
coordinates on F. Integration along the fiber 7, : Q7 (E) — Q'~4(B)
is defined by
(7 () (@ 1) dby Al Aeee Adly) = ¢/ Pt diy A A diy
F
T (5 (D) f(z, t) dbiy Ndtiy, N--- ANdt;,)) = 0 ifr<d.
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Compactified Moduli Spaces

A Morse-Bott-Smale function on S2

Consider S? = {(z,y,2) € R3| 22 + 32 + 22 = 1}, and let
f(z,y,2) = 2%. Then By~ S', By =0, and By = {n, s}.

52 71
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Compactified Moduli Spaces

The Austin-Braam complex of f(z,y,z) = 2

R

OR
T
0

CO(f) —2=C(f) —2L=C2(f) —2=0

The second row computes the de Rham cohomology of S'. Hence,

HO(C*(f),0) ~ R.
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Compactified Moduli Spaces

Orientations are required to define 0,

Note that M(Bsg, By) = M(Ba, By) ~ S' 11 S*, where the
components have opposite orientations if W*(n) and W*(s) are
given the same orientation as S%. The map

(04)" = ©1(Bo) — Q' (M(B2, Bo))

pulls back a 1-form w to wITw € Q' (S1) T NL(ST), and the map
(0_)s : Q" (M(Ba,By)) - R&R

integrates a 1-form over the components.

Oz (w) = (=1)(9-)«(9}w) = (¢, ),

HY(C*(f),0) =~ 0, and H2(C*(f),0) ~R?/R =~ R.
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Compactified Moduli Spaces

Fibered products

Let 0; : P, — B for ¢ = 1,2 be two continuous maps into a
topological space B. Recall that the fibered product of 1 and o9 is
defined to be Py xg Py = (01 x 02)"(A), where A is the diagonal
in B X B, i.e.

P xgp Py, = {(1’1,.%2) e P x P2| 0'1(1‘1) = 0'2(:132)}.
Lemma
Suppose that o1 : P, — B and o9 : Py — B are smooth maps where
Py, Py, and B are smooth manifolds (without boundary) of dimension
p1, p2, and b respectively. If o1 is transverse to os, then the fibered
product Py xp P» is a smooth manifold of dimension p1 + p2 — b.

Proof: This follows from the fact that o1 rh o9 if and only if
(0'1 X 0'2) h A.
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Compactified Moduli Spaces

Counterexample
Let f:[—1,1] — [—1,1] x [-1, 1] be given by

| (z,e V" sin(r/z)) ifz#£0
f(”:)_{(o,o) if 2 = 0

and g : [-1,1] — [-1,1] x [—1, 1] be given by g(z,y) = (x,0). Then
f and g are smooth maps from finite dimensional compact oriented
smooth manifolds with boundary whose fibered product

[—1,1] X(f,g) [—1,1] =
{(2,0) € [-1,1] x [=1,1] | & = 0,41, +1/2, +1/3,...}.

Hence, the fibered product of two finite CW-complexes might not be
a CW-complex, and the fibered product of two finite simplicial
complexes might not be a finite simplicial complex.
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Compactified Moduli Spaces

Theorem (L. Nielsen)

Let X and Y be C® manifolds with corners, where s > 1. Let ACY
be a C® submanifold with corners, and f : X — Y a local C* map,
which preserves local facets relatively to A and intersects A
transversally and stratum transversally. Then either f~*(A) =0, or

1. f71(A) is a C* submanifold with corners of X, and

2. dim X — dim f~Y(A) = dimY — dim A, and

3. ind(X,z) — ind(f~1(A),z) = ind(Y, f(x)) — ind(A, f(z)) for all

z € f7L(A).

Note: When Y is a manifold without boundary the local facets
condition is always satisfied.
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Compactified Moduli Spaces

Stratum transversality

The assumption that f intersects A stratum transversally means
that for any = € f~1(A) we have

dfo(ToX) + T,A=T,Y

where y = f(x) and T, X denotes the tangent space of the stratum
containing x € X. Similarly, we say thatamap f: X — Y is a
stratum submersion at x € X if and only if df, maps 7, X onto
TyY where y = f(z).

Note that if f is a stratum submersion at z € X and A C Y is any
submanifold with corners containing ¥, then f intersects A stratum
transversally.
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Compactified Moduli Spaces

Lemma (B-H)
For any two connected critical submanifolds B and B’ of a
Morse-Bott-Smale function, the beginning point map

o_: M(B,B')— B
is a submersion and a stratum submersion.

Corollary (B-H)

If B and B’ are connected critical submanifolds of a
Morse-Bott-Smale function and o : P — B is a smooth map from a
compact smooth manifold with corners P, then

P xp M(B,B')

is a compact smooth manifold with corners.
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Compactified Moduli Spaces Fibered Products

Triangulations and fibered products

Having triangulations on two spaces does not immediately induce a
triangulation on the fibered product. In fact, there are simple
diagrams of polyhedra and piecewise linear maps for which the
diagram is not triangulable.

R p_T_

Q

There may not exist triangulations of P, (2, and R with respect to
which both f and g are simplicial. [J.L. Bryant, Triangulation and
general position of PL diagrams, Top. App. 34 (1990), 211-233]
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Morse and Morse-Bott homology
Singu N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology i , ..., Om using fibered products

The Banyaga-Hurtubise approach (~2007)

Modeled on cubical singular homology. Based on ideas from Austin
and Braam (~1995), Barraud and Cornea (~2004), Fukaya (~1995),
Weber (~2006) etc.

Step 1: Generalize the notion of singular p-simplexes to allow maps
from spaces other than the standard p-simplex AP C RPT! or the
unit p-cube I? C RP. These generalizations of AP (or IP) are called
abstract topological chains, and the corresponding singular chains
are called singular topological chains.

Step 2: Show that 0 extends to fibered products, and show that the
compactified moduli spaces of gradient flow lines are abstract
topological chains, i.e. J is defined.
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Morse and Morse-Bott homology
Singu N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology i , ..., Om using fibered products

The Banyaga-Hurtubise approach (~2007)

Step 3: Define the set of allowed domains C), in the Morse-Bott-
Smale chain complex as a collection of fibered products (with dy
defined), and show that the allowed domains are all compact oriented
smooth manifolds with corners.

Step 4: Define 04, ..., 0y, using fibered products of compactified
moduli spaces of gradient flow lines and the beginning and endpoint
maps. Define 9 =30y & --- & J,, and show that do 9 = 0.

Step 5: Define orientation conventions on the elements of ), and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that 0 =39y ® --- ® I
is compatible with the degeneracy relations.
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Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology Defining 01, . . ., Om, using fibered products

The Banyaga-Hurtubise approach (~2007)

Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C«(f),0y) is independent of f: M — R.

When f: M — R is Morse-Smale, (Ci(f), ) is the Morse-Smale-
Witten complex, and when f is constant (C.(f), 0s) is the chain
complex of cubical singular chains.

This gives a new proof of the Morse Homology Theorem which
combines Morse chains and cubical singular chains in the same chain
complex.
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Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology Defining 01, . . . , O, using fibered products

- ——Cp(Bs)

_ 01(132)‘% Co(By) —2 0

&\

— — — 03(By) 2= Cy(By) —2> €1 (By) —2~ Cy(By) —2~ 0

I Il I I
—— — () L= o) L= i) — 2= Co(f) —2>0
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Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology Defining 01, . . ., Om, using fibered products

Step 1

For each integer p > 0 fix a set C), of topological spaces, and let .S,
be the free abelian group generated by the elements of C, i.e.
Sp = Z[Cp). Set S, = {0} if p<0or Cp=0.
Definition
A boundary operator on the collection S, of groups {S,} is a
homomorphism &, : S, — S,—1 such that

1. Forp>1and P € C, C S, 0p(P) =), npP; where nj = £1

and P, € Cp_1 is a subspace of P for all k.

2. Op—100p: Sy — Sp—a is zero.
We call (S,, ) a chain complex of abstract topological chains.
Elements of S, are called abstract topological chains of degree p.
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Step 1 continued

Definition

Let B be a topological space and p € Z. A singular Cp-space in B
is a continuous map o : P — B where P € C,, and the singular
Cp-chain group Sy,(B) is the free abelian group generated by the
singular C)-spaces. Define S,(B) = {0} if S, = {0} or B = ).
Elements of S,,(B) are called singular topological chains of degree
p.

Note: These definitions are quite general. To construct the M-B-S
chain complex we really only need C), to include the p-dimensional
faces of an N-cube, the compactified moduli spaces of gradient flow
lines of dimension p, and the components of their fibered products of
dimension p.
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Step 1 conclusion

For p > 1 there is a boundary operator 9, : S,(B) = Sp—1(B)
induced from the boundary operator 9, : S, = Sp—1. If 0 : P — B is
a singular C)-space in B, then 0,(0) is given by the formula

Op(0) =Y _myolp,
k

where

k

The pair (S«(B), 04) is called a chain complex of singular
topological chains in B.
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Abstract N-cube chains
Pick some large positive integer N and let
™V ={(z1,...,an) €ERN|0<z; <1, j=1,...,N}

denote the unit N-cube. For every 0 < p < N let C), be the set
consisting of the faces of IV of dimension p, i.e. subsets of IV where
p of the coordinates are free and the rest of the coordinates are fixed
to be either 0 or 1. For every 0 < p < N let S, be the free abelian
group generated by the elements of C),. For P € C), define

8P(P) = Z(_l)j [P’szzl - P‘xj:()] S Sp—l

where x; denotes the jth free coordinate of P.
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Cubical singular boundary operator (Massey)

A,

B,

B
2 A,

The chain o : I? — B has boundary
82(0’) = (—1)[0’0141 —O‘OBl] + [O’OAQ —O'OBQ]

where the terms in the sum are all maps with domain I = [0, 1].
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Topological cubical boundary operator (B-H)

0| B, I’ |4, :(_1) A — B, |+ _
B,

B,
The chain o : I? — B has boundary
9a(0) = (=Do|a, — olp,] + [o|a; — o[B,]

and the degeneracy relations identify terms that are “essentially” the
same.
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Singular N-cube chains

A continuous map op : P — B from a p-face P of IV into a
topological space B is a singular C),-space in B. The boundary
operator applied to op is

M@

O'P‘szl UP|xj:0] € Sp—l(B)
]:1

where op|;,—o denotes the restriction op : Pl;,—0 — B and op|s;=1
denotes the restriction op : Ply;=1 — B.
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Degeneracy relations

Definition
Let op and 0@ be singular Cy-spaces in B and let
(@) =>_,n;Qj € Sp—1. Foranymap a: P — @, let 9y(0g) o
denote the formal sum } . n;(0g o a)|o-1(q,)- Define the subgroup
D,(B) C S,(B) of degenerate singular N-cube chains to be the
subgroup generated by the following elements.
1. If « is an orientation preserving homeomorphism such that
ogoa =op and 0y(0g) o = Oy(op), then op —og € Dy(B).
2. If op does not depend on some free coordinate of P, then
op € Dp(B>
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Theorem
The boundary operator for singular N-cube chains
0p : Sp(B) — Sp—1(B) descends to a homomorphism

p : Sp(B)/Dp(B) = Sp-1(B)/Dp-1(B),

and
Hp(S«(B)/Dy(B),0:) ~ Hy(B; Z)

for allp < N.
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Step 2

Show that O extends to fibered products, and show that the
compactified moduli spaces of gradient flow lines are abstract
topological chains, i.e. Jy is defined.

Fibered products

Suppose that o1 : P — B is a singular Sy, -space and 03 : P, — B is
a singular Sj,-space, where (S, 0;) is a chain complex of abstract
topological chains. The fibered product of 1 and o9 is

P1 XB P2 = {(.%‘1,.%’2) S P1 X P2| 0'1(371) = 02(232)}.

This construction extends linearly to singular topological chains. The
degree of the fibered product P, x g P>, is defined to be p; + po — b.
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The boundary operator applied to the fibered product is defined to
be
8(P1 XB PQ) = 0P xg Py + (—1)p1+bP1 xg 0P,

where P; and 0P, denote the boundary operator applied to the
abstract topological chains P; and P,. If o1 = 0, then we define
0 xg P, = 0. Similarly, if 0o =0, then P, x50 =0.

Lemma

The fibered product of two singular topological chains is an abstract
topological chain, i.e. the boundary operator on fibered products is of
degree -1 and satisfies 0 o 0 = 0. Moreover, the boundary operator
on fibered products is associative, i.e.

6((P1 X By PQ) X By Pg,) = 8(P1 X By (P2 X By Pg))
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Proof that P; X P, is an abstract topological chain

Recall that the degree of Py xpg P» is p1 + p2 — b.

Since 0 is a boundary operator on P; and P, the degree of OP; is
p1 — 1 and the degree of P, is po — 1. Hence both OP; xp P; and
P, xg OP, have degree p1 + ps — b — 1.

To see that 9?(P; x P») = 0 we compute as follows.

8(8(]31 X B Pg)) = @(8P1 xp P+ (—1)p1+bP1 XB 0P2)
= 82P1 X Py + (—1)p1_1+b3P1 xXpg 0Py +
(=) T(OP, xp OPy + (—1)P1 PP x g 97 Py)
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Proof of associativity

Given the data of a triple

we can form the iterated fibered product
(PL xp, P») xp, P3

using o23 and the map 092 0o mg : Py X, Po — B, where
mo ¢ P X g, P» — P, denotes projection to the second component.
Similarly, we can form the iterated fibered product

Py xp, (P2 xB, P3)

using 011 and the map o132 07 : Py Xp, Po — By, where
m1 @ Py X, P3 — P, denotes projection to the first component.
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8(P1 X By (Pg X By Pg))

= 8P1 X B; (PQ X Bo Pg) ( )p1+b1P1 X B 8(P2 X Bo Pg)
= 8P1 X Bi (P2 X By Pg)
(_1)p1+b1 (P1 X B, (8P2 X By P+ (—1)p2+b2P2 X By 8P3))
= 0P xB, P2 xp, P3+ (—1)p1+b1P1 X By 0P, X B, P34+
(_1)p1+p2+b1+b2p1 X, Py xp, XxOP3

((Pr xp, P2) xp, Ps)

= 8(P1 X B P2) X Bg P3 + (—1>deg(P1XBIP2)+b2(P1 X B Pg) X By 8P3

= (0P xp, Po+ (=1)P"*"1 Py X, OPy) x, Ps+
(_1)p1+p2*b1+52pl X B, P, X B, OPs

= 0P X B, Py X B, Ps; + (—1)p1+b1P1 X B, 0P, X By Ps;+
(_1)p1+p27b1+bgpl X B P X By XOP3
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Compactified moduli spaces as abstract topological chains

Definition

Let f: M — R be a Morse-Bott-Smale function, and let B; be the
set of critical points of index i. For any j = 1,...,4 we define the
degree of M(B;, B;_;) to be j + b; — 1 and the boundary operator
to be

aﬂ(BivBi—j) = (_ Z+b Z M BzaB )XB M(BWBZ J)

1—j<n<i

where b; = dim B; and the fibered product is taken over the
beginning and endpoint maps 0_ and 0. If B, = (), then
M(B;, B,) = M(By, Bi—j) = 0.
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Lemma

The degree and boundary operator for M(B;, B;_;) satisfy the
axioms for abstract topological chains, i.e. the boundary operator on
the compactified moduli spaces is of degree —1 and 0 0 0 = 0.

Proof: Let d = deg M(B;,B,) =i —n+b; — 1.
Then O(M(B;, By) x g, M(By, Bi—j))

OM(Bi, Bn) X, M(Bn, Bi—;) + (=1)*"*" M(Bi, B,) x5, OM(Bn, Bi—;)

- Hb Z (Bi, Bs, B, Bi— J)‘F(_l)”biil Z M(B;, B, Bt, Bi—;)

n<s 1—j<t<n
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Therefore, 9> M(B;, B;—;)

= (=7 > [ (=1 > M(Bi, By, Ba, Bi i)+

i—j<n<i n<s<i
(—1)*t N M(Bi, Bn, By, Bi ;)
i—j<t<n
_ (_1)i+bi (_1)i+bi Z ﬂ(Bi,BsanvBi—j)"'
i—j<n<s<i
(—1yi+bit Z M(B;, By, Bt, Bi—)
i—j<t<n<i
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Step 3

Define the set of allowed domains C), in the Morse-Bott-Smale
chain complex as a collection of fibered products (with Jy defined),
and show that the allowed domains are all compact oriented smooth
manifolds with corners.

For any p > 0, let C}, be the set consisting of the faces of IN of
dimension p and the connected components of degree p of fibered
products of the form

Q %, M(Biy, Biy) xB,, M(Biy, Biy) X, - %, M(Bi,_,, Bi,,)

in—1
where m > i1 > iy > --- >, >0, Q is a face of IV of dimension
q <p, o:Q — Bj; is smooth, and the fibered products are taken
with respect to o and the beginning and endpoint maps.
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Theorem
The elements of C), are compact oriented smooth manifolds with
corners, and there is a boundary operator

0:8, = Sp_1
where S), is the free abelian group generated by the elements of C,.

Let Sp°(B;) denote the subgroup of the singular Cj-chain group
Sp(B;) generated by smooth maps o : P — B; such that c =0y o7
whenever P € (), is a connected component of a fibered product,
where 7 denotes projection onto the last component of the fibered
product.

Define 8y : S3°(B;) — S32(B;) by dp = (—1)P+i0.
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Step 4

Define 04, ..., Op, using fibered products of compactified moduli
spaces of gradient flow lines and the beginning and endpoint maps.
Define 0 =0y @ - - - @ Oy, and show that 9o d = 0.

If o : P — B; is a singular Cy-space in S;°(B;), then for any
7 =1,...,1 composing the projection map 7 onto the second
component of P x g, M(B;, B;—;) with the endpoint map

04 : M(Bj, B;_j) — B;_; gives a map
P X B; H(Bi,Bi_j) ﬂ> M(Bi,Bi_j) i Bi_j.

Restricting J4 o w9 to the connected components of the fibered
product and adding these restrictions (with the sign determined by
the orientation when the dimension of a component is zero) defines
an element 0;(0) € Sp3,_1(Bi—j)-
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Lemma

If o : P — B; is a singular Cy-space in S;°(B;), then for any

j =1,...,1 adding the components of P x g, M(B;, B,_;) (with
sign when the dimension of a component is zero) yields an abstract
topological chain of degree p+ j — 1. That is, we can identify

P X B; M(Bl, Bl',j) € Sp+j,1.
Thus, for all j = 1,...,i there is an induced homomorphism
95+ Sp°(Bi) = SpY-1(Bi—j)

which decreases the Morse-Bott degree p + i by 1.

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology Defining 91, . . . , On, using fibered products

Proposition

J
Zaqaj,q =0, forevery j =0,...,m.
q=0
Proof: When ¢ = 0 we compute:
90(9;(P))
80 (P XB; M(BZ, Bi,j))
(—=1)PH=1 (0P x g, M(B;, Bi—j) + (—1)P*" P x g, OM(B;, B;i_;))
(=P 19P xp, M(B;, Bi—;) +
(—1)PPr2bet2=t N P oxp, M(B;, Bn) X, M(By, Bi_;)

i—j<n<i

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains

..., Om using fibered products

“Singular” Morse-Bott Homology Defining 91

If 1 <qg<j—1, then

0q(0j—q(P)) = P xp, M(Bi; Bi—jiq) XB,_; ;s M(Bi-j+q: Bi—;)

i—j+q
and if ¢ = 7, then
0;(00(P)) = (—1)”“8]3 X B, M(Bi, Bi_j).

Summing these expressions gives the desired result.

Corollary
The pair (C.(f),d) is a chain complex, where

Culf) = D SE2(B)
=0

and 0 =90y D - D I,.
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Step 5

Define orientation conventions on the elements of C), and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that 0 =30y ® --- ® I
is compatible with the degeneracy relations.

Orientation conventions
Assume that every critical submanifold B and every negative normal
bundle v, (B) are oriented. For any p € B, the relation

T,M =T,B & v, (B) & v, (B)

determines an orientation on Z/;_(B). The stable and unstable
manifolds are oriented by requiring that the injective immersions
Et:vf(B) —» W?*(B) and E~ : v, (B) — W"(B) are orientation

preserving.
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If N C M is an oriented submanifold, then the normal bundle of N is
oriented by the relation T, (N) @ v (N) = T, (M) for all z € N. For
any two connected critical submanifolds B and B’, the orientation on
W(B,B') = W*(B) h W#(B’) is determined by the relation

T.(M) =T,W(B,B") ® v,(W*(B')) & v,(W*(B))
for all x € W(B, B’). Picking a non-critical value a between f(B’)
and f(B) we can identify M(B,B’) = f~(a) "W (B, B’). An
orientation on M(B, B’) is then determined by

T.W (B, B") = span((—=V f)(x)) ® T, M(B, B)

for all x € f~(a) N W (B, B'). This determines an orientation on the
compact manifold with boundary M(B, B’).
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Definition

Suppose that B is an oriented smooth manifold without boundary
and P; and Ps are oriented smooth manifolds with corners. If
o1: Pi — B and 09 : P, — B are smooth maps that intersect
transversally and stratum transversally, then the orientation on the
smooth manifold with corners P; x g P» is defined by the relation

(—~1)dim BAM PO (P x 5 Py (o1 x02) (n(A(B))) = Tu(Pyx P),

where v, (A(B)) denotes the normal bundle of the diagonal in BxB.

Lemma
The above orientation on fibered products of transverse intersections
of smooth manifolds with corners is associative.
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Degeneracy relations

Let op,0q € S;°(B;) be singular C)-spaces in B; and let
0Q = Zj n;Q; € Sp—1. Forany map a: P — @, let
def p+i
dogoa = (-1) Z"j(UQ ° a)la-1(Q))-
J

Define the subgroup D;°(B;) C Sp°(B;) of degenerate singular
topological chains to be the subgroup generated by the following
elements.
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1. If « is an orientation preserving diffeomorphism such that
ogoa=op and dog o a = dyop, then op — og € D°(B;).

2. If Pis a face of IV and op does not depend on some free
coordinate of P, then op € D;°(B;) and
9j(op) € Dp3; 1(Bi—j) forall j=1,....m

3. If P and @ are connected components of some fibered products
and « is an orientation reversing map such that cgoa = op
and dyog o = Opop, then op +0g € Dgo(BZ-).

4. If Q is a face of IV and R is a connected component of a
fibered product

QXB M( 19 ZQ)XB M( 2 )XBiS"'XB' M(Bin—l?Bin)

tn—1

such that deg R > dim B;,, then o € D°(B;,) and

8( )GDT—H 1( in_j)forallj:O,...,m
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5. 1f Y, naoa € Si(R) is a smooth singular chain in a connected
component R of a fibered product (as in (4)) that represents the
fundamental class of R and

Zna(aoaR 00q) — Z NaOo(0R © 04)

is in the group generated by the elements satisfying one of the
above conditions, then

OR — Zna(aR 004) € DX°(B;,)

(e}
and

aj OR — Zna(UR © Ua) € Dv?ij—l(Bin*j)

«

forall j=1,...,m.
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Step 6

Show that the homology of the Morse-Bott-Smale chain complex
(C«(f), 04) is independent of f: M — R.

Given two Morse-Bott-Smale functions f1, fo : M — R we pick a
smooth function Fy; : M x R — R meeting certain transversality
requirements such that

Jim Foy(z,t) = fi(e) +1
Jm Fy(z,t) = faz) —1

for all z € M. The compactified moduli spaces of gradient flow lines
of Fy (the time dependent gradient flow lines) are used to define a
chain map (Fb1)o : Ci(f1) = Ci(f2), where (Ci(fx), ) is the
Morse-Bott chain complex of fj, for k =1, 2.
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Next we consider the case where we have four Morse-Bott-Smale
functions fr : M — R where k = 1,2, 3,4, and we pick a smooth
function H : M x R x R — R meeting certain transversality

requirements such that

s—+00 t——00

lim lim H(z
§——00 t—400

lim lim H(x,s,t

forall x € M.
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H=/s H=f,—2

t 1

7

H=fi+2 s H=f>
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The compactified moduli spaces of gradient flow lines of H are used
to define a chain homotopy between (Fy3)n o (F31)n and

(Fi2)o o (Fa1)o where (Fii)o @ Cu(fx) — Ci(f1) is the map defined
above for k,1 =1,2,3,4. In homology the map

(Fir)« : Ho(Ci(fr),0) = Hi(Ci(fx),0) is the identity for all k, and
hence

(Fi2)s o (Fo1)« = (Fr1)«o (F11)« =1d
(FQI)* o (FIQ)* = (FQQ)* o (Fgg)* = id.

Therefore,

(Fa1)« : Hi(Ci(f1),0) = Hi(Ci(f2),0)

is an isomorphism.
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Theorem (Morse-Bott Homology Theorem)

The homology of the Morse-Bott chain complex (Cy.(f),0) is
independent of the Morse-Bott-Smale function f : M — R.

Therefore,
H.(C.(f),0) ~ H (M;Z).

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Morse and Morse-Bott homology
Singular N-cube chains

Compactified moduli spaces as abstract topological chains
“Singular” Morse-Bott Homology Defining 91, . . . , On, using fibered products

An example of Morse-Bott homology

Consider M = S? = {(z,y,2) € R3| 22 + 4% + 22 = 1}, and let
f(z,y,2) = 22. Then By~ S', B; =0, and By = {n, s}.

n k2

2 -1
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The degeneracy conditions imply
S°(Ba) /Dy (B2) =< n,s >~ & L,

and SIC;O(BQ)/D;O(BQ) =0 for p > 0.

<n,s>
53] \\
6]
> 0
01 01
& 5] &

S5°(Bo)/ DS (Bo) —> 5% (Bo)/ D5* (Bo) — > S&°(Bo)/ D§* (Bo) — > 0

Ca(f) Ci(f) Co(f) 0
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The group Sp°(By)/D5°(By) is non-trivial for all £ < N, but
Hi(Cy(f),0) =0 if k>2and

9o : S3°(Bo)/Ds°(Bo) — S3°(Bo)/D3° (Bo)
maps onto the kernel of the boundary operator
9o : 53°(Bo)/D3°(Bo) — St°(Bo)/D1°(Bo)

because the bottom row in the above diagram computes the smooth
integral singular homology of By ~ S*.
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The moduli space M(Bz, By) is a disjoint union of two copies of S*
with opposite orientations. This moduli space can be viewed as a
subset of the manifold S? since M(Ba, By) = M(Ba, By).

n S2

D e MBI
M (Bs,Bo) N ’ Or
— X5, A

M(B2,Bo)
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There is an orientation reversing map
a:n Xy M(BQ,BO) — S Xg M(BQ,BO)

such that 02(n) o a = Oa(s). Since 9p(02(n)) = Jp(02(s)) = 0, the
degeneracy conditions imply that

O2(n+ s) = 02(n) + da(s) =0 € S1(By)/D1(By).
They also imply that 0o maps either n or s onto a representative of
the generator of

ker &y : S7°(Bo)/D1°(Bo) — 55°(Bo)/ D" (Bo)

~ 1. ~
im B0 - 55°(Bo) /D5 (Bo) — 5% (Bo) [D¥(By) ~ 1B~ E

depending on the orientation chosen for By. Therefore,

Z ifk=0,2
Hi(Ci(f),0) = { 0 otherwise.
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