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The project

Construct a “singular” chain complex analogous to the
Morse-Smale-Witten chain complex for Morse-Bott functions.

Question: Why would anyone want to do this?

After all, we can always perturb a smooth function to get a
Morse-Smale function. Also, a Morse-Bott function determines a
filtration, and hence, a spectral sequence.
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Perturbations

1. If f :M → R is a Morse-Bott function, study the
Morse-Smale-Witten complex as ε→ 0 of

h = f + ε

 l∑
j=1

ρjfj

 .

2. If h :M → R is a Morse-Smale function, study the
Morse-Smale-Witten complex of εh :M → R as ε→ 0.

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Introduction and Definitions
Algebraic Structure

Compactified Moduli Spaces
“Singular” Morse-Bott Homology

Equivariant homology
Morse-Bott functions
Stable/Unstable manifolds
Morse-Bott-Smale functions

Equivariant homology
If π : E → B is a smooth fiber bundle with fiber F and f is a Morse
function on B, then f ◦ π is a Morse-Bott function with critical
submanifolds diffeomorphic to F .

F // E

π
��
B

f // R
In particular, if G is a Lie group acting on M and π : EG→ BG is
the classifying bundle for G, then this might be useful for studying
equivariant homology HG

∗ (M) := H∗(EG×GM).

M // EG×GM
π
��

BG
f // R
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Morse-Bott functions

Definition
A smooth function f :M → R on a smooth manifold M is called a
Morse-Bott function if and only if Cr(f) is a disjoint union of
connected submanifolds, and for each connected submanifold
B ⊆ Cr(f) the normal Hessian is non-degenerate for all p ∈ B.

Lemma (Morse-Bott Lemma)

Let f :M → R be a Morse-Bott function, and let B be a critical
submanifold. For any p ∈ B there is a local chart of M around p and
a local splitting of the normal bundle ν∗(B) = ν+∗ (B)⊕ ν−∗ (B)
identifying a point x ∈M in its domain with
(u, v, w) ∈ B ⊕ ν+∗ (B)⊕ ν−∗ (B) such that within this chart f
assumes the form

f(x) = f(u, v, w) = f(B) + |v|2 − |w|2.
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Stable/Unstable manifolds
Pick a Riemannian metric g on M , and let φt be the flow of −∇f .
For p ∈ Cr(f) the stable manifold W s(p) and the unstable
manifold W u(p) are defined as follows.

W s(p) = {x ∈M | lim
t→∞

φt(x) = p} (f decreases to p)

W u(p) = {x ∈M | lim
t→−∞

φt(x) = p} (f increases to p)

Definition
If f :M → R is a Morse-Bott function, then the stable and unstable
manifolds of a critical submanifold B are defined to be

W s(B) =
⋃
p∈B

W s(p)

W u(B) =
⋃
p∈B

W u(p).
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Theorem (Stable/Unstable Manifold Theorem)

The stable and unstable manifolds W s(B) and W u(B) are the
surjective images of smooth injective immersions E+ : ν+∗ (B)→M
and E− : ν−∗ (B)→M . There are smooth endpoint maps
∂+ :W s(B)→ B and ∂− :W u(B)→ B given by
∂+(x) = limt→∞ φt(x) and ∂−(x) = limt→−∞ φt(x) which when
restricted to a neighborhood of B have the structure of locally trivial
fiber bundles.

Definition
The index of B is the dimension of ν−∗ (B).
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Morse-Bott-Smale functions

Definition (Morse-Bott-Smale Transversality)

A function f :M → R is said to satisfy the Morse-Bott-Smale
transversality condition with respect to a Riemannian metric g on
M if and only if f is Morse-Bott and for any two connected critical
submanifolds B and B′, W u(p) intersects W s(B′) transversely for all
p ∈ B, i.e. W u(p) ⋔W s(B′).

[Zhou] Given a Morse-Bott function f :M → R it may not be
possible to pick a Riemannian metric for which f is M-B-S. However,
it is always possible to find a Morse-Bott-Smale pair (f, g), where
W u(Bi) ⋔W s(Bj) for all i,j and the maps

W (Bi1 , Bi2)×Bi2
· · · ×Bil−1

W (Bil−1
, Bil)

∂+→ Bil
∂−←W (Bil , Bil+1

)

are transverse for all (i1, . . . , il+1).
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Counterexample [Latschev]

Consider the function h : T 2 → [−6, 0] given by

h(φ,ψ) = −(2 + cos 2φ)(1 + cosψ)

for (φ,ψ) ∈ [0, 2π)× [0, 2π).

hφ = (2 sin 2φ)(1 + cosψ) and hψ = (2 + cos 2φ)(sinψ)
The maximum value 0 determines a critical submanifold of dimension
one: B1 = {(φ, π)| φ ∈ [0, 2π)}, and there are two discrete minima
(0, 0) and (π, 0) and two discrete saddle points (π/2, 0) and
(3π/2, 0). There is no metric such that W u(p) ⋔W s((π/2, 0)) for
p ∈ B1 because both W u(p) and W s((π/2, 0)) are one dimensional.
However, it is possible to pick a metric such that −h is
Morse-Bott-Smale.
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Dimensions, index, and coindex

Lemma
If f satisfies the Morse-Bott-Smale transversality condition, B is a
critical submanifold of dimension b, the index of B is
λB = dim ν−∗ (B), and the coindex of B is λ∗B = dim ν+∗ (B), then

m = b+ λ∗B + λB

dim W u(B) = b+ λB

dim W s(B′) = b′ + λ∗B′ = m− λB′

dim W (B,B′) = λB − λB′ + b (if W (B,B′) ̸= ∅),

where m = dim M .

Note: The dimension of W (B,B′) does not depend on the dimension
of the critical submanifold B′.
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Algebraic structure of a Morse-Bott-Smale chain complex

Assume that f :M → R is a Morse-Bott-Smale function and the
manifold M , the critical submanifolds, and their negative normal
bundles are all orientable.

Let Cp(Bi) be the group of “p-dimensional chains” in the critical
submanifolds of index i. For all k = 0, . . . ,m define the group of
chains of Morse-Bott degree k to be

Ck(f) =

m⊕
i=0

Ck−i(Bi).

The boundary operator is defined as a sum of homomorphisms
∂ = ∂0 ⊕ · · · ⊕ ∂m where ∂j : Cp(Bi)→ Cp+j−1(Bi−j).
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The Morse-Bott-Smale chain complex

C0(B3)
∂0 //

∂1

%%∂2

��

∂3

��

0

C1(B2)

⊕

∂0 //

∂1

%%∂2

��

C0(B2)
∂0 //

∂1

%%∂2

��

⊕

0

C2(B1)

⊕

∂0 //

∂1

%%

C1(B1)

⊕

∂0 //

∂1

%%

C0(B1)

⊕

∂0 //

∂1

%%

0

C3(B0)

⊕

∂0 // C2(B0)

⊕

∂0 // C1(B0)

⊕

∂0 // C0(B0)

⊕

∂0 // 0

C3(f)

∥

∂ // C2(f)

∥

∂ // C1(f)

∥

∂ // C0(f)

∥

∂ // 0
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The Morse-Bott-Smale multicomplex

C3(B0)

∂0

��

C3(B1)

∂0

��

∂1oo C3(B2)

∂0

��

∂1oo C3(B3)

∂0

��

∂1oo

C2(B0)

∂0

��

C2(B1)

∂0

��

∂1oo C2(B2)

∂0

��

∂1oo
∂2

jj

C2(B3)

∂0

��

∂1oo
∂2

jj

C1(B0)

∂0

��

C1(B1)

∂0

��

∂1oo C1(B2)

∂0

��

∂1oo
∂2

jj

C1(B3)

∂0

��

∂1oo
∂2

jj

∂3

hh

C0(B0) C0(B1)
∂1oo C0(B2)

∂1oo
∂2

jj

C0(B3)
∂1oo

∂2

jj

∂3

hh
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The spectral sequence associated to a M-B-S complex
The Morse-Bott chain complex (C∗(f), ∂) is a filtered differential
graded Z-module where the (increasing) filtration is determined by
the Morse-Bott index.

FsCk(f) ≡
⊕
i≤s

Ck−i(Bi)

The associated bigraded module G(C∗(f)) is given by

G(C∗(f))s,t = FsCs+t(f)/Fs−1Cs+t(f) ≈ Ct(Bs),

and E1 term of the associated spectral sequence is

E1
s,t ≈ Hs+t(FsC∗(f)/Fs−1C∗(f)) ≈ Ht(Bs),

where the homology is computed with respect to the boundary
operator on the chain complex FsC∗(f)/Fs−1C∗(f) induced by
∂ = ∂0 ⊕ · · · ⊕ ∂m, i.e. ∂0.
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The E1 term of the spectral sequence
...

...
...

...

H2(B0) H2(B1)
d1oo H2(B2)

d1oo H2(B3)
d1oo · · ·

H1(B0) H1(B1)
d1oo H1(B2)

d1oo H1(B3)
d1oo · · ·

H0(B0) H0(B1)
d1oo H0(B2)

d1oo H0(B3)
d1oo · · ·

Note: In general, d1 ̸= ∂1 and ∂21 ̸= 0. However, d1 = (∂1)∗. This is
very seldom true for the higher order differentials [Boardman]
[Hurtubise].
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The Austin-Braam de Rham cochain complex ∼1995
Let Bi be the set of critical points of index i and Ci,j = Ωj(Bi) the
set of j-forms on Bi. Austin and Braam define maps

∂r : C
i,j → Ci+r,j−r+1

for r = 0, 1, 2, . . . ,m which raise the “total degree” i+ j by one.
The map ∂0 = d and ∂r is defined using integration along the fiber
for r = 1, 2, . . . ,m. The maps ∂r : Ω

j(Bi)→ Ωj−r+1(Bi+r) fit
together to form a cochain complex where ∂ = ∂0 ⊕ · · · ⊕ ∂m and

Ck(f) =
k⊕
i=0

Ωk−i(Bi).

Note: Integration along the fiber requires the “fibration condition”
[Zhou], which is a consequence of M-B-S transversality.
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The Austin-Braam M-B-S cochain complex

Ω0(B3)

Ω0(B2)
d //

∂1

99

Ω1(B2)

⊕

Ω0(B1)
d //

∂1

99

Ω1(B1)
d //

∂1

99

∂2

CC

⊕

Ω2(B1)

⊕

Ω0(B0)
d //

∂1

99

Ω1(B0)
d //

∂1

99

∂2

CC

⊕

Ω2(B0)
d //

∂1

99

∂2

CC

∂3

GG

Ω3(B0)

⊕

C0(f)
∂ //

∥

C1(f)
∂ //

∥

C2(f)
∂ //

∥

C3(f)
∂ //

∥

· · ·
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Other approaches

“abstract geometric chains” and fibered products
(Fukaya, Ruan, Tian) ∼1996

“collections of simplicial complexes”
(Liu and Tian) ∼1999

Kuranishi structures, fibered products, and spectral sequences
(Fukaya, Oh, Ohta, Ono) ∼2008

“abstract topological chains” and fibered products
(Banyaga Hurtubise) ∼2010

currents and homological perturbation theory
(Zhou) ∼2022
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Moduli spaces of gradient flow lines
For any two critical submanifolds B and B′ the flow φt induces an
R-action on W u(B) ∩W s(B′). Let

M(B,B′) = (W u(B) ∩W s(B′))/R

be the quotient space of gradient flow lines from B to B′.

Theorem (Gluing)

Suppose that B, B′, and B′′ are critical submanifolds such that
W u(B) ⋔W s(B′) and W u(B′) ⋔W s(B′′). In addition, assume that
W u(x) ⋔W s(B′′) for all x ∈ B′. Then for some ϵ > 0, there is an
injective local diffeomorphism

G :M(B,B′)×B′M(B′, B′′)× (0, ϵ)→M(B,B′′)

onto an end ofM(B,B′′). The gluing maps can be chosen to be
associative.
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The standard metric

B
0

G :M(B,B′)×B′M(B′, B′′)× (0, ϵ)→M(B,B′′)

The parameter t ∈ (0, ϵ) is related to the time to flow (or the
distance) from f−1(f(B′) + ε) to f−1(f(B′)− ε).
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Compactified moduli spaces

Theorem (Compactification)

Assume that f :M → R satisfies the Morse-Bott-Smale
transversality condition. For any two distinct critical submanifolds B
and B′ the moduli spaceM(B,B′) has a compactification
M(B,B′), consisting of all the piecewise gradient flow lines from B
to B′, which is a compact smooth manifold with corners of dimension
λB − λB′ + b− 1. Moreover, the beginning and endpoint maps
extend to smooth maps

∂− :M(B,B′)→ B

∂+ :M(B,B′)→ B′,

where ∂− has the structure of a locally trivial fiber bundle.
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A deformed sphere

f

S

z

2

p

q

r

s

M(r, p) ≈M(s, p) ≈ S1 − {pt}

M(r, p) ≈M(s, p) ≈ [0, 1]
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The flat torus (Diagram: R. Cohen)

p

pp

p

q q

r

r

s

T 2

M(s, p) ≈ [0, 1]⨿ [0, 1]⨿ [0, 1]⨿ [0, 1]
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The Austin-Braam coboundary operator

Pulling back along the endpoint map and then apply integration
along the fiber using the beginning point map gives a “pull-push”
operation that transports a differential form from Bi to Bi+r.

Bi+r M(Bi+r, Bi)
∂−oo ∂+ // Bi

Definition (Austin-Braam)

The map ∂r : Ω
j(Bi)→ Ωj−r+1(Bi+r) is defined by

∂r(ω) =

{
dω r = 0
(−1)j(∂−)∗(∂∗+ω) r ̸= 0.
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Integration along the fiber

Let π : E → B be a fiber bundle where B is a closed manifold, a
typical fiber F is a compact oriented d-dimensional manifold with
corners, and π∂ : ∂E → B is also a fiber bundle with fiber ∂F . A
differential form on E may be written locally as

π∗(ϕ)f(x, t) dti1 ∧ dti2 ∧ · · · ∧ dtir

where ϕ is a form on B, x are coordinates on B, and the tj are
coordinates on F . Integration along the fiber π∗ : Ω

j(E)→ Ωj−d(B)
is defined by

π∗(π
∗(ϕ)f(x, t) dt1 ∧ dt2 ∧ · · · ∧ dtd) = ϕ

∫
F
f(x, t) dt1 ∧ · · · ∧ dtd

π∗(π
∗(ϕ)f(x, t) dti1 ∧ dti2 ∧ · · · ∧ dtir) = 0 if r < d.
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A Morse-Bott-Smale function on S2

Consider S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}, and let
f(x, y, z) = z2. Then B0 ≈ S1, B1 = ∅, and B2 = {n, s}.

S

z

0

1

1

f

2

2

B0

B2

n

s
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The Austin-Braam complex of f(x, y, z) = z2

R⊕ R

0 0

⊕

Ω0(S1) d //

∂1

99

OO

≈
��

Ω1(S1) d //

∂1
99

∂2

BB

⊕

OO

≈
��

0

⊕

OO

≈
��

C0(f) ∂ // C1(f) ∂ // C2(f) ∂ // 0

The second row computes the de Rham cohomology of S1. Hence,
H0(C∗(f), ∂) ≈ R.
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Orientations are required to define ∂2

Note thatM(B2, B0) =M(B2, B0) ≈ S1 ⨿ S1, where the
components have opposite orientations if W u(n) and W u(s) are
given the same orientation as S2. The map

(∂+)
∗ : Ω1(B0)→ Ω1(M(B2, B0))

pulls back a 1-form ω to ω ⨿ ω ∈ Ω1(S1)⨿ Ω1(S1), and the map

(∂−)∗ : Ω
∗(M(B2, B0))→ R⊕ R

integrates a 1-form over the components.

∂2(ω) = (−1)(∂−)∗(∂∗+ω) = (c,±c),

H1(C∗(f), ∂) ≈ 0, and H2(C∗(f), ∂) ≈ R2/R ≈ R.
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Fibered products

Let σi : Pi → B for i = 1, 2 be two continuous maps into a
topological space B. Recall that the fibered product of σ1 and σ2 is
defined to be P1 ×B P2 = (σ1 × σ2)−1(∆), where ∆ is the diagonal
in B ×B, i.e.

P1 ×B P2 = {(x1, x2) ∈ P1 × P2| σ1(x1) = σ2(x2)}.
Lemma
Suppose that σ1 : P1 → B and σ2 : P2 → B are smooth maps where
P1, P2, and B are smooth manifolds (without boundary) of dimension
p1, p2, and b respectively. If σ1 is transverse to σ2, then the fibered
product P1 ×B P2 is a smooth manifold of dimension p1 + p2 − b.

Proof: This follows from the fact that σ1 ⋔ σ2 if and only if
(σ1 × σ2) ⋔ ∆.
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Counterexample

Let f : [−1, 1]→ [−1, 1]× [−1, 1] be given by

f(x) =

{
(x, e−1/x2 sin(π/x)) if x ̸= 0
(0, 0) if x = 0

and g : [−1, 1]→ [−1, 1]× [−1, 1] be given by g(x, y) = (x, 0). Then
f and g are smooth maps from finite dimensional compact oriented
smooth manifolds with boundary whose fibered product
[−1, 1]×(f,g) [−1, 1] =

{(x, 0) ∈ [−1, 1]× [−1, 1] | x = 0,±1,±1/2,±1/3, . . .}.

Hence, the fibered product of two finite CW-complexes might not be
a CW-complex, and the fibered product of two finite simplicial
complexes might not be a finite simplicial complex.
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Theorem (L. Nielsen)

Let X and Y be Cs manifolds with corners, where s ≥ 1. Let A ⊆ Y
be a Cs submanifold with corners, and f : X → Y a local Cs map,
which preserves local facets relatively to A and intersects A
transversally and stratum transversally. Then either f−1(A) = ∅, or
1. f−1(A) is a Cs submanifold with corners of X, and

2. dim X − dim f−1(A) = dim Y − dim A, and

3. ind(X,x)− ind(f−1(A), x) = ind(Y, f(x))− ind(A, f(x)) for all
x ∈ f−1(A).

Note: When Y is a manifold without boundary the local facets
condition is always satisfied.
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Stratum transversality

The assumption that f intersects A stratum transversally means
that for any x ∈ f−1(A) we have

dfx(T̂xX) + T̂yA = T̂yY

where y = f(x) and T̂xX denotes the tangent space of the stratum
containing x ∈ X. Similarly, we say that a map f : X → Y is a
stratum submersion at x ∈ X if and only if dfx maps T̂xX onto
T̂yY where y = f(x).

Note that if f is a stratum submersion at x ∈ X and A ⊆ Y is any
submanifold with corners containing y, then f intersects A stratum
transversally.
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Lemma (B-H)

For any two connected critical submanifolds B and B′ of a
Morse-Bott-Smale function, the beginning point map

∂− :M(B,B′)→ B

is a submersion and a stratum submersion.

Corollary (B-H)

If B and B′ are connected critical submanifolds of a
Morse-Bott-Smale function and σ : P → B is a smooth map from a
compact smooth manifold with corners P , then

P ×BM(B,B′)

is a compact smooth manifold with corners.
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Triangulations and fibered products

Having triangulations on two spaces does not immediately induce a
triangulation on the fibered product. In fact, there are simple
diagrams of polyhedra and piecewise linear maps for which the
diagram is not triangulable.

R P
goo f // Q

There may not exist triangulations of P , Q, and R with respect to
which both f and g are simplicial. [J.L. Bryant, Triangulation and
general position of PL diagrams, Top. App. 34 (1990), 211-233]
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The Banyaga-Hurtubise approach (∼2007)

Modeled on cubical singular homology. Based on ideas from Austin
and Braam (∼1995), Barraud and Cornea (∼2004), Fukaya (∼1995),
Weber (∼2006) etc.
Step 1: Generalize the notion of singular p-simplexes to allow maps
from spaces other than the standard p-simplex △p ⊂ Rp+1 or the
unit p-cube Ip ⊂ Rp. These generalizations of △p (or Ip) are called
abstract topological chains, and the corresponding singular chains
are called singular topological chains.
Step 2: Show that ∂ extends to fibered products, and show that the
compactified moduli spaces of gradient flow lines are abstract
topological chains, i.e. ∂0 is defined.
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The Banyaga-Hurtubise approach (∼2007)

Step 3: Define the set of allowed domains Cp in the Morse-Bott-
Smale chain complex as a collection of fibered products (with ∂0
defined), and show that the allowed domains are all compact oriented
smooth manifolds with corners.
Step 4: Define ∂1, . . . , ∂m using fibered products of compactified
moduli spaces of gradient flow lines and the beginning and endpoint
maps. Define ∂ = ∂0 ⊕ · · · ⊕ ∂m and show that ∂ ◦ ∂ = 0.
Step 5: Define orientation conventions on the elements of Cp and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that ∂ = ∂0 ⊕ · · · ⊕ ∂m
is compatible with the degeneracy relations.
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The Banyaga-Hurtubise approach (∼2007)

Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C∗(f), ∂∗) is independent of f :M → R.
When f :M → R is Morse-Smale, (C∗(f), ∂∗) is the Morse-Smale-
Witten complex, and when f is constant (C∗(f), ∂∗) is the chain
complex of cubical singular chains.

This gives a new proof of the Morse Homology Theorem which
combines Morse chains and cubical singular chains in the same chain
complex.
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C0(B3)
∂0 //

∂1

%%∂2

��

∂3

��

0

C1(B2)

⊕

∂0 //

∂1

%%∂2

��

C0(B2)
∂0 //

∂1

%%∂2

��

⊕

0

C2(B1)

⊕

∂0 //

∂1

%%

C1(B1)

⊕

∂0 //

∂1

%%

C0(B1)

⊕

∂0 //

∂1

%%

0

C3(B0)

⊕

∂0 // C2(B0)

⊕

∂0 // C1(B0)

⊕

∂0 // C0(B0)

⊕

∂0 // 0

C3(f)

∥

∂ // C2(f)

∥

∂ // C1(f)

∥

∂ // C0(f)

∥

∂ // 0
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Step 1

For each integer p ≥ 0 fix a set Cp of topological spaces, and let Sp
be the free abelian group generated by the elements of Cp, i.e.
Sp = Z[Cp]. Set Sp = {0} if p < 0 or Cp = ∅.

Definition
A boundary operator on the collection S∗ of groups {Sp} is a
homomorphism ∂p : Sp → Sp−1 such that

1. For p ≥ 1 and P ∈ Cp ⊆ Sp, ∂p(P ) =
∑

k nkPk where nk = ±1
and Pk ∈ Cp−1 is a subspace of P for all k.

2. ∂p−1 ◦ ∂p : Sp → Sp−2 is zero.

We call (S∗, ∂∗) a chain complex of abstract topological chains.
Elements of Sp are called abstract topological chains of degree p.
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Step 1 continued

Definition
Let B be a topological space and p ∈ Z+. A singular Cp-space in B
is a continuous map σ : P → B where P ∈ Cp, and the singular
Cp-chain group Sp(B) is the free abelian group generated by the
singular Cp-spaces. Define Sp(B) = {0} if Sp = {0} or B = ∅.
Elements of Sp(B) are called singular topological chains of degree
p.

Note: These definitions are quite general. To construct the M-B-S
chain complex we really only need Cp to include the p-dimensional
faces of an N -cube, the compactified moduli spaces of gradient flow
lines of dimension p, and the components of their fibered products of
dimension p.
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Step 1 conclusion

For p ≥ 1 there is a boundary operator ∂p : Sp(B)→ Sp−1(B)
induced from the boundary operator ∂p : Sp → Sp−1. If σ : P → B is
a singular Cp-space in B, then ∂p(σ) is given by the formula

∂p(σ) =
∑
k

nkσ|Pk

where
∂p(P ) =

∑
k

nkPk.

The pair (S∗(B), ∂∗) is called a chain complex of singular
topological chains in B.
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Abstract N -cube chains

Pick some large positive integer N and let

IN = {(x1, . . . , xN ) ∈ RN | 0 ≤ xj ≤ 1, j = 1, . . . , N}

denote the unit N -cube. For every 0 ≤ p ≤ N let Cp be the set
consisting of the faces of IN of dimension p, i.e. subsets of IN where
p of the coordinates are free and the rest of the coordinates are fixed
to be either 0 or 1. For every 0 ≤ p ≤ N let Sp be the free abelian
group generated by the elements of Cp. For P ∈ Cp define

∂p(P ) =

p∑
j=1

(−1)j
[
P |xj=1 − P |xj=0

]
∈ Sp−1

where xj denotes the j
th free coordinate of P .
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Cubical singular boundary operator (Massey)

B
¾B1

A
1

I
1 2

I

A2

B2

The chain σ : I2 → B has boundary

∂2(σ) = (−1)[σ ◦A1 − σ ◦B1] + [σ ◦A2 − σ ◦B2]

where the terms in the sum are all maps with domain I1 = [0, 1].
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Topological cubical boundary operator (B-H)

I
2@ =A

1

A2

B2

B1 A
1

A2

B2

¡
¡

+B
1( 1)¡

The chain σ : I2 → B has boundary

∂2(σ) = (−1)[σ|A1 − σ|B1 ] + [σ|A2 − σ|B2 ]

and the degeneracy relations identify terms that are “essentially” the
same.
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Singular N -cube chains

A continuous map σP : P → B from a p-face P of IN into a
topological space B is a singular Cp-space in B. The boundary
operator applied to σP is

∂p(σP ) =

p∑
j=1

(−1)j
[
σP |xj=1 − σP |xj=0

]
∈ Sp−1(B)

where σP |xj=0 denotes the restriction σP : P |xj=0 → B and σP |xj=1

denotes the restriction σP : P |xj=1 → B.
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Degeneracy relations

Definition
Let σP and σQ be singular Cp-spaces in B and let
∂p(Q) =

∑
j njQj ∈ Sp−1. For any map α : P → Q, let ∂p(σQ) ◦ α

denote the formal sum
∑

j nj(σQ ◦ α)|α−1(Qj). Define the subgroup
Dp(B) ⊆ Sp(B) of degenerate singular N-cube chains to be the
subgroup generated by the following elements.

1. If α is an orientation preserving homeomorphism such that
σQ ◦ α = σP and ∂p(σQ) ◦ α = ∂p(σP ), then σP − σQ ∈ Dp(B).

2. If σP does not depend on some free coordinate of P , then
σP ∈ Dp(B).
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Theorem
The boundary operator for singular N -cube chains
∂p : Sp(B)→ Sp−1(B) descends to a homomorphism

∂p : Sp(B)/Dp(B)→ Sp−1(B)/Dp−1(B),

and
Hp(S∗(B)/D∗(B), ∂∗) ≈ Hp(B;Z)

for all p < N .
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Step 2

Show that ∂ extends to fibered products, and show that the
compactified moduli spaces of gradient flow lines are abstract
topological chains, i.e. ∂0 is defined.

Fibered products

Suppose that σ1 : P1 → B is a singular Sp1-space and σ2 : P2 → B is
a singular Sp2-space, where (S∗, ∂∗) is a chain complex of abstract
topological chains. The fibered product of σ1 and σ2 is

P1 ×B P2 = {(x1, x2) ∈ P1 × P2| σ1(x1) = σ2(x2)}.

This construction extends linearly to singular topological chains. The
degree of the fibered product P1 ×B P2 is defined to be p1 + p2 − b.
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The boundary operator applied to the fibered product is defined to
be

∂(P1 ×B P2) = ∂P1 ×B P2 + (−1)p1+bP1 ×B ∂P2

where ∂P1 and ∂P2 denote the boundary operator applied to the
abstract topological chains P1 and P2. If σ1 = 0, then we define
0×B P2 = 0. Similarly, if σ2 = 0, then P1 ×B 0 = 0.

Lemma
The fibered product of two singular topological chains is an abstract
topological chain, i.e. the boundary operator on fibered products is of
degree -1 and satisfies ∂ ◦ ∂ = 0. Moreover, the boundary operator
on fibered products is associative, i.e.

∂((P1 ×B1 P2)×B2 P3) = ∂(P1 ×B1 (P2 ×B2 P3)).
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Proof that P1 ×B P2 is an abstract topological chain

Recall that the degree of P1 ×B P2 is p1 + p2 − b.

Since ∂ is a boundary operator on P1 and P2, the degree of ∂P1 is
p1 − 1 and the degree of ∂P2 is p2 − 1. Hence both ∂P1 ×B P2 and
P1 ×B ∂P2 have degree p1 + p2 − b− 1.
To see that ∂2(P1 ×B P2) = 0 we compute as follows.

∂(∂(P1 ×B P2)) = ∂(∂P1 ×B P2 + (−1)p1+bP1 ×B ∂P2)

= ∂2P1 ×B P2 + (−1)p1−1+b∂P1 ×B ∂P2 +

(−1)p1+b(∂P1 ×B ∂P2 + (−1)p1+bP1 ×B ∂2P2)

= 0.
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Proof of associativity

Given the data of a triple

P1
σ11 // B1 P2

σ12oo σ22 // B2 P3
σ23oo

we can form the iterated fibered product

(P1 ×B1 P2)×B2 P3

using σ23 and the map σ22 ◦ π2 : P1 ×B1 P2 → B2, where
π2 : P1 ×B1 P2 → P2 denotes projection to the second component.
Similarly, we can form the iterated fibered product

P1 ×B1 (P2 ×B2 P3)

using σ11 and the map σ12 ◦ π1 : P1 ×B1 P2 → B1, where
π1 : P2 ×B2 P3 → P2 denotes projection to the first component.
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∂(P1 ×B1 (P2 ×B2 P3))

= ∂P1 ×B1 (P2 ×B2 P3) + (−1)p1+b1P1 ×B1 ∂(P2 ×B2 P3)
= ∂P1 ×B1 (P2 ×B2 P3)+

(−1)p1+b1(P1 ×B1 (∂P2 ×B2 P3 + (−1)p2+b2P2 ×B2 ∂P3))
= ∂P1 ×B1 P2 ×B2 P3 + (−1)p1+b1P1 ×B1 ∂P2 ×B2 P3+

(−1)p1+p2+b1+b2P1 ×B1 P2 ×B2 ×∂P3

∂((P1 ×B1 P2)×B2 P3)

= ∂(P1 ×B1 P2)×B2 P3 + (−1)deg(P1×B1
P2)+b2(P1 ×B1 P2)×B2 ∂P3

= (∂P1 ×B1 P2 + (−1)p1+b1P1 ×B1 ∂P2)×B2 P3+
(−1)p1+p2−b1+b2P1 ×B1 P2 ×B2 ∂P3

= ∂P1 ×B1 P2 ×B2 P3 + (−1)p1+b1P1 ×B1 ∂P2 ×B2 P3+
(−1)p1+p2−b1+b2P1 ×B1 P2 ×B2 ×∂P3
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Compactified moduli spaces as abstract topological chains

Definition
Let f :M → R be a Morse-Bott-Smale function, and let Bi be the
set of critical points of index i. For any j = 1, . . . , i we define the
degree ofM(Bi, Bi−j) to be j + bi − 1 and the boundary operator
to be

∂M(Bi, Bi−j) = (−1)i+bi
∑

i−j<n<i
M(Bi, Bn)×BnM(Bn, Bi−j)

where bi = dim Bi and the fibered product is taken over the
beginning and endpoint maps ∂− and ∂+. If Bn = ∅, then
M(Bi, Bn) =M(Bn, Bi−j) = 0.
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Lemma
The degree and boundary operator forM(Bi, Bi−j) satisfy the
axioms for abstract topological chains, i.e. the boundary operator on
the compactified moduli spaces is of degree −1 and ∂ ◦ ∂ = 0.

Proof: Let d = degM(Bi, Bn) = i− n+ bi − 1.

Then ∂(M(Bi, Bn)×BnM(Bn, Bi−j))

= ∂M(Bi, Bn)×Bn M(Bn, Bi−j) + (−1)d+bnM(Bi, Bn)×Bn ∂M(Bn, Bi−j)

= (−1)i+bi
∑

n<s<i

M(Bi, Bs, Bn, Bi−j) + (−1)i+bi−1
∑

i−j<t<n

M(Bi, Bn, Bt, Bi−j)
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Therefore, ∂2M(Bi, Bi−j)

= (−1)i+bi

[ ∑
i−j<n<i

(
(−1)i+bi

∑
n<s<i

M(Bi, Bs, Bn, Bi−j)+

(−1)i+bi−1
∑

i−j<t<n

M(Bi, Bn, Bt, Bi−j)

)]

= (−1)i+bi

[
(−1)i+bi

∑
i−j<n<s<i

M(Bi, Bs, Bn, Bi−j)+

(−1)i+bi−1
∑

i−j<t<n<i

M(Bi, Bn, Bt, Bi−j)

]
= 0

2
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Step 3

Define the set of allowed domains Cp in the Morse-Bott-Smale
chain complex as a collection of fibered products (with ∂0 defined),
and show that the allowed domains are all compact oriented smooth
manifolds with corners.

For any p ≥ 0, let Cp be the set consisting of the faces of IN of
dimension p and the connected components of degree p of fibered
products of the form

Q×Bi1
M(Bi1 , Bi2)×Bi2

M(Bi2 , Bi3)×Bi3
· · ·×Bin−1

M(Bin−1 , Bin)

where m ≥ i1 > i2 > · · · > in ≥ 0, Q is a face of IN of dimension
q ≤ p, σ : Q→ Bi1 is smooth, and the fibered products are taken
with respect to σ and the beginning and endpoint maps.
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Theorem
The elements of Cp are compact oriented smooth manifolds with
corners, and there is a boundary operator

∂ : Sp → Sp−1

where Sp is the free abelian group generated by the elements of Cp.

Let S∞
p (Bi) denote the subgroup of the singular Cp-chain group

Sp(Bi) generated by smooth maps σ : P → Bi such that σ = ∂+ ◦ π
whenever P ∈ Cp is a connected component of a fibered product,
where π denotes projection onto the last component of the fibered
product.

Define ∂0 : S
∞
p (Bi)→ S∞

p−1(Bi) by ∂0 = (−1)p+i∂.
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Step 4
Define ∂1, . . . , ∂m using fibered products of compactified moduli
spaces of gradient flow lines and the beginning and endpoint maps.
Define ∂ = ∂0 ⊕ · · · ⊕ ∂m and show that ∂ ◦ ∂ = 0.

If σ : P → Bi is a singular Cp-space in S∞
p (Bi), then for any

j = 1, . . . , i composing the projection map π2 onto the second
component of P ×BiM(Bi, Bi−j) with the endpoint map
∂+ :M(Bi, Bi−j)→ Bi−j gives a map

P ×BiM(Bi, Bi−j)
π2−→M(Bi, Bi−j)

∂+−→ Bi−j .

Restricting ∂+ ◦ π2 to the connected components of the fibered
product and adding these restrictions (with the sign determined by
the orientation when the dimension of a component is zero) defines
an element ∂j(σ) ∈ S∞

p+j−1(Bi−j).
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Lemma
If σ : P → Bi is a singular Cp-space in S∞

p (Bi), then for any

j = 1, . . . , i adding the components of P ×BiM(Bi, Bi−j) (with
sign when the dimension of a component is zero) yields an abstract
topological chain of degree p+ j − 1. That is, we can identify

P ×BiM(Bi, Bi−j) ∈ Sp+j−1.

Thus, for all j = 1, . . . , i there is an induced homomorphism

∂j : S
∞
p (Bi)→ S∞

p+j−1(Bi−j)

which decreases the Morse-Bott degree p+ i by 1.
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Proposition
j∑
q=0

∂q∂j−q = 0, for every j = 0, . . . ,m.

Proof: When q = 0 we compute:

∂0(∂j(P ))

= ∂0
(
P ×Bi

M(Bi, Bi−j)
)

= (−1)p+i−1
(
∂P ×Bi

M(Bi, Bi−j) + (−1)p+biP ×Bi
∂M(Bi, Bi−j)

)
= (−1)p+i−1∂P ×Bi M(Bi, Bi−j) +

(−1)2p+2bi+2i−1
∑

i−j<n<i

P ×Bi
M(Bi, Bn)×Bn

M(Bn, Bi−j)
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If 1 ≤ q ≤ j − 1, then

∂q(∂j−q(P )) = P ×BiM(Bi, Bi−j+q)×Bi−j+q M(Bi−j+q, Bi−j)

and if q = j, then

∂j(∂0(P )) = (−1)p+i∂P ×BiM(Bi, Bi−j).

Summing these expressions gives the desired result.

2
Corollary

The pair (C̃∗(f), ∂) is a chain complex, where

C̃k(f) =

m⊕
i=0

S∞
k−i(Bi)

and ∂ = ∂0 ⊕ · · · ⊕ ∂m.
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Step 5

Define orientation conventions on the elements of Cp and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that ∂ = ∂0 ⊕ · · · ⊕ ∂m
is compatible with the degeneracy relations.

Orientation conventions
Assume that every critical submanifold B and every negative normal
bundle ν−∗ (B) are oriented. For any p ∈ B, the relation

TpM = TpB ⊕ ν+p (B)⊕ ν−p (B)

determines an orientation on ν+p (B). The stable and unstable
manifolds are oriented by requiring that the injective immersions
E+ : ν+∗ (B)→W s(B) and E− : ν−∗ (B)→W u(B) are orientation
preserving.
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If N ⊆M is an oriented submanifold, then the normal bundle of N is
oriented by the relation Tx(N)⊕ νx(N) = Tx(M) for all x ∈ N . For
any two connected critical submanifolds B and B′, the orientation on
W (B,B′) =W u(B) ⋔W s(B′) is determined by the relation

Tx(M) = TxW (B,B′)⊕ νx(W s(B′))⊕ νx(W u(B))

for all x ∈W (B,B′). Picking a non-critical value a between f(B′)
and f(B) we can identifyM(B,B′) = f−1(a) ∩W (B,B′). An
orientation onM(B,B′) is then determined by

TxW (B,B′) = span((−∇f)(x))⊕ TxM(B,B′)

for all x ∈ f−1(a)∩W (B,B′). This determines an orientation on the
compact manifold with boundaryM(B,B′).
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Definition
Suppose that B is an oriented smooth manifold without boundary
and P1 and P2 are oriented smooth manifolds with corners. If
σ1 : P1 → B and σ2 : P2 → B are smooth maps that intersect
transversally and stratum transversally, then the orientation on the
smooth manifold with corners P1 ×B P2 is defined by the relation

(−1)(dim B)(dim P2)T∗(P1×BP2)⊕(σ1×σ2)∗(ν∗(∆(B))) = T∗(P1×P2),

where ν∗(∆(B)) denotes the normal bundle of the diagonal in B×B.

Lemma
The above orientation on fibered products of transverse intersections
of smooth manifolds with corners is associative.

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Introduction and Definitions
Algebraic Structure

Compactified Moduli Spaces
“Singular” Morse-Bott Homology

Morse and Morse-Bott homology
Singular N-cube chains
Compactified moduli spaces as abstract topological chains
Defining ∂1, . . . , ∂m using fibered products

Degeneracy relations

Let σP , σQ ∈ S∞
p (Bi) be singular Cp-spaces in Bi and let

∂Q =
∑

j njQj ∈ Sp−1. For any map α : P → Q, let

∂0σQ ◦ α
def
= (−1)p+i

∑
j

nj(σQ ◦ α)|α−1(Qj).

Define the subgroup D∞
p (Bi) ⊆ S∞

p (Bi) of degenerate singular
topological chains to be the subgroup generated by the following
elements.
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1. If α is an orientation preserving diffeomorphism such that
σQ ◦ α = σP and ∂0σQ ◦ α = ∂0σP , then σP − σQ ∈ D∞

p (Bi).

2. If P is a face of IN and σP does not depend on some free
coordinate of P , then σP ∈ D∞

p (Bi) and
∂j(σP ) ∈ D∞

p+j−1(Bi−j) for all j = 1, . . . ,m.

3. If P and Q are connected components of some fibered products
and α is an orientation reversing map such that σQ ◦ α = σP
and ∂0σQ ◦ α = ∂0σP , then σP + σQ ∈ D∞

p (Bi).

4. If Q is a face of IN and R is a connected component of a
fibered product

Q×Bi1
M(Bi1 , Bi2)×Bi2

M(Bi2 , Bi3)×Bi3
· · ·×Bin−1

M(Bin−1 , Bin)

such that deg R > dim Bin , then σR ∈ D∞
r (Bin) and

∂j(σR) ∈ D∞
r+j−1(Bin−j) for all j = 0, . . . ,m.
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5. If
∑

α nασα ∈ S∗(R) is a smooth singular chain in a connected
component R of a fibered product (as in (4)) that represents the
fundamental class of R and∑

α

nα(∂0σR ◦ σα)−
∑
α

nα∂0(σR ◦ σα)

is in the group generated by the elements satisfying one of the
above conditions, then

σR −
∑
α

nα(σR ◦ σα) ∈ D∞
r (Bin)

and

∂j

(
σR −

∑
α

nα(σR ◦ σα)

)
∈ D∞

r+j−1(Bin−j)

for all j = 1, . . . ,m.
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Step 6

Show that the homology of the Morse-Bott-Smale chain complex
(C∗(f), ∂∗) is independent of f :M → R.

Given two Morse-Bott-Smale functions f1, f2 :M → R we pick a
smooth function F21 :M × R→ R meeting certain transversality
requirements such that

lim
t→−∞

F21(x, t) = f1(x) + 1

lim
t→+∞

F21(x, t) = f2(x)− 1

for all x ∈M . The compactified moduli spaces of gradient flow lines
of F21 (the time dependent gradient flow lines) are used to define a
chain map (F21)2 : C∗(f1)→ C∗(f2), where (C∗(fk), ∂) is the
Morse-Bott chain complex of fk for k = 1, 2.
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Next we consider the case where we have four Morse-Bott-Smale
functions fk :M → R where k = 1, 2, 3, 4, and we pick a smooth
function H :M × R× R→ R meeting certain transversality
requirements such that

lim
s→−∞

lim
t→−∞

H(x, s, t) = f1(x) + 2

lim
s→+∞

lim
t→−∞

H(x, s, t) = f2(x)

lim
s→−∞

lim
t→+∞

H(x, s, t) = f3(x)

lim
s→+∞

lim
t→+∞

H(x, s, t) = f4(x)− 2

for all x ∈M .
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H f=H f= + 2

H f=

1

3 4
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H f= 2¡

s

t
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The compactified moduli spaces of gradient flow lines of H are used
to define a chain homotopy between (F43)2 ◦ (F31)2 and
(F42)2 ◦ (F21)2 where (Flk)2 : C∗(fk)→ C∗(fl) is the map defined
above for k, l = 1, 2, 3, 4. In homology the map
(Fkk)∗ : H∗(C∗(fk), ∂)→ H∗(C∗(fk), ∂) is the identity for all k, and
hence

(F12)∗ ◦ (F21)∗ = (F11)∗ ◦ (F11)∗ = id

(F21)∗ ◦ (F12)∗ = (F22)∗ ◦ (F22)∗ = id.

Therefore,

(F21)∗ : H∗(C∗(f1), ∂)→ H∗(C∗(f2), ∂)

is an isomorphism.
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Theorem (Morse-Bott Homology Theorem)

The homology of the Morse-Bott chain complex (C∗(f), ∂) is
independent of the Morse-Bott-Smale function f :M → R.
Therefore,

H∗(C∗(f), ∂) ≈ H∗(M ;Z).
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An example of Morse-Bott homology

Consider M = S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}, and let
f(x, y, z) = z2. Then B0 ≈ S1, B1 = ∅, and B2 = {n, s}.

S

z

0

1

1

f

2

2

B0

B2

n

s

Augustin Banyaga and David Hurtubise “Singular” Morse-Bott Homology



Introduction and Definitions
Algebraic Structure

Compactified Moduli Spaces
“Singular” Morse-Bott Homology

Morse and Morse-Bott homology
Singular N-cube chains
Compactified moduli spaces as abstract topological chains
Defining ∂1, . . . , ∂m using fibered products

The degeneracy conditions imply

S∞
0 (B2)/D

∞
0 (B2) ≈< n, s >≈ Z⊕ Z,

and S∞
p (B2)/D

∞
p (B2) = 0 for p > 0.

< n, s >
∂0 //

∂1

))
∂2

##

0

0

⊕

∂0 //

∂1

))

0

⊕

∂0 //

∂1

))

0

S∞
2 (B0)/D

∞
2 (B0)

⊕

∂0 // S∞
1 (B0)/D

∞
1 (B0)

⊕

∂0 // S∞
0 (B0)/D

∞
0 (B0)

⊕

∂0 // 0

C2(f)

∥

∂ // C1(f)

∥

∂ // C0(f)

∥

∂ // 0
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The group S∞
k (B0)/D

∞
k (B0) is non-trivial for all k ≤ N , but

Hk(C∗(f), ∂) = 0 if k > 2 and

∂0 : S
∞
3 (B0)/D

∞
3 (B0)→ S∞

2 (B0)/D
∞
2 (B0)

maps onto the kernel of the boundary operator

∂0 : S
∞
2 (B0)/D

∞
2 (B0)→ S∞

1 (B0)/D
∞
1 (B0)

because the bottom row in the above diagram computes the smooth
integral singular homology of B0 ≈ S1.
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The moduli spaceM(B2, B0) is a disjoint union of two copies of S1

with opposite orientations. This moduli space can be viewed as a
subset of the manifold S2 sinceM(B2, B0) =M(B2, B0).

S2n

s

M(B ,B )2 0
@+

n£ M(B ,B )2 0

s£ M(B ,B )2 0B

2

2

B
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There is an orientation reversing map

α : n×nM(B2, B0)→ s×sM(B2, B0)

such that ∂2(n) ◦ α = ∂2(s). Since ∂0(∂2(n)) = ∂0(∂2(s)) = 0, the
degeneracy conditions imply that

∂2(n+ s) = ∂2(n) + ∂2(s) = 0 ∈ S1(B0)/D1(B0).

They also imply that ∂2 maps either n or s onto a representative of
the generator of

ker ∂0 : S
∞
1 (B0)/D

∞
1 (B0)→ S∞

0 (B0)/D
∞
0 (B0)

im ∂0 : S∞
2 (B0)/D∞

2 (B0)→ S∞
1 (B0)/D∞

1 (B0)
≈ H1(S

1;Z) ≈ Z

depending on the orientation chosen for B0. Therefore,

Hk(C∗(f), ∂) =

{
Z if k = 0, 2
0 otherwise.
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