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The project

Construct a (singular) chain complex analogous to the Morse-
Smale-Witten chain complex for Morse-Bott functions.

Question: Why would anyone want to do this? After all,
we can always perturb a smooth function to get a Morse-Smale
function. Also, a Morse-Bott function determines a filtration, and
hence, a spectral sequence.

Example

If #: E — B is asmooth fiber bundle with fiber F'. and f is a
Morse function on B, then f o 7 is a Morse-Bott function with
critical submanifolds diffeomorphic to F'.

T
B-L-R
In particular, if G is a Lie group acting on M and 7 : EG — BG
is the classifying bundle for GG, then

M—EG XgM
BG——R

S0, this might be useful for studying equivariant homology:
HS(M)=H,(EG xg M).

Other Examples: The square of the moment map, product
structures in symplectic Floer homology, quantum cohomology,
ete.




Perturbations

1.If f: M — R is a Morse-Bott function, study the Morse-
Smale-Witten complex as € — 0 of

[
h:f—|—€ ijfj
=1

2.1t h : M — R is a Morse-Smale function, study the Morse-
Smale-Witten complex of eh : M — R as ¢ — 0.



Morse-Bott functions

Definition 1 A smooth function f : M — R on a smooth
manifold M s called a Morse-Bott function if and only if
Cr(f) is a disjoint union of connected submanifolds, and for
each connected submanifold B C Cr(f) the normal Hessian is
non-degenerate for all p € B.

Lemma 1 (Morse-Bott Lemma) Let f : M — R be a
Morse-Bott function, and let B be a connected component of

the critical set Cr(f). For any p € B there is a local chart of
M around p and a local splitting of the normal bundle of B

v.(B) = v (B) ®v,(B)

identifying a point x € M in its domain to (u,v,w) where
u € B, vev(B), we v, (B) such that within this chart f
assumes the form

fla) = flu,v,w) = f(B) + [o* = |w].

Note that if p € B, then this implies that
T,M =T,B® v, (B)®v, (D).

If we let A\, = dim v, (B) be the index of a connected critical

submanifold B, b = dim B, and A\; = dim v, (B), then we have
the fundamental relation

m = b+)\;+)\p

where m = dim M.



Morse-Bott functions 11

For p € Cr(f) the stable manifold W#*(p) and the unstable mani-
fold W*(p) are defined the same as they are for a Morse function:

Wop) = 1@ € M| lim ¢i(z) = p}
Wp) = {z e M| Tm_@i(x) = p}.

Definition 2 If f : M — R is a Morse-Bott function, then

the stable and unstable manifolds of a critical submanifold B
are defined to be

w(B) = (W)

peB

w(B) = [J W)

peB

Theorem 1 (Stable/Unstable Manifold Theorem) The
stable and unstable manifolds W*(B) and W"(B) are the sur-
jective images of smooth injective immersions Et : v (B) —
M and E= : v, (B) — M. There are smooth endpoint maps
0, : W*(B) — B and 0_ : W% B) — B given by 0.(x) =
limy oo () and O_(x) = limy_, o @i(x) which when restricted
to a neighborhood of B have the structure of locally trivial fiber
bundles.



Morse-Bott-Smale functions

Definition 3 (Morse-Bott-Smale Transversality) A func-
tion f : M — R s said to satisfy the Morse-Bott-Smale
transversality condition with respect to a given metric on M
of and only if f is Morse-Bott and for any two connected crit-
ical submanifolds B and B', W"(p) intersects W*(B') trans-
versely, i.e. W"(p) M W*(B"), for all p € B.

Note: For a given Morse-Bott function f : M — R it may not be
possible to pick a Riemannian metric for which f is Morse-Bott-
Smale.

Lemma 2 Suppose that B is of dimension b and index \g and
that B" is of dimension b' and index Ag. Then we have the
following where m = dim M :

dim WUJ(B) = b+ A\p
dim WS<B/) — b/ + )\*B/ = m — )\B’
dim W(B,B/) = Ag— Ap+0b (ZfW(B,B/) 7&@)

Note: The dimension of W (B, B') does not depend on the dimen-
sion of the critical submanifold B’. This fact will be used when
we define the boundary operator in the Morse-Bott-Smale chain
complex.



The general form of a M-B-S complex

Assume that f : M — R is a Morse-Bott-Smale function and
the manifold M, the critical submanifolds, and their negative nor-
mal bundles are all orientable. Let C,(B;) be the group of “p-
dimensional chains” in the critical submanifolds of index 7. A
Morse-Bott-Smale chain complex is of the form:

D

01(32)—>Co(32)
o \\ o \\ o
Cy( B1 C1 B1 Co By) 80 O
\\44 ,
Cs( Bo C2 Bo Co(Bo) -0

I I H I
Cs3(f)—2-Cy(f)—2-C1(f) -2~ Co(f) -2~ 0

where the boundary operator is defined as a sum of homomor-
phisms 0 = @0 D --- D &n where aj : Cp<BZ) — p+j—1<Bz'—j)-
This type of algebraic structure is known as a multicomplex.

The homomorphism 0): For a deRham-type cohomology the-
ory &y = d. For a singular theory 9y = (—1)*0, where 0 is the
“usual” boundary operator from singular homology:.

Ways to define 0;,...,0,,:

1. deRham version: integration along the fiber.

2. singular versions: fibered product constructions.



The associated spectral sequence

The Morse-Bott chain multicomplex can be written as follows
to resemble a first quadrant spectral sequence.

dy

Bs)
7))

Bs)
.03 7))
Co(Bo) 2= Cy(By) 2= Cy(By) = Cy(Bs)

More precisely, the Morse-Bott chain complex (C,(f), 0) is a fil-
tered differential graded Z-module where the (increasing) filtration

is determined by the Morse-Bott index. The associated bigraded
module G(CL(f)) is given by

G<C*<f)>8,t — FSCs+t<f)/Fs—1Cs+t<f) ~ Ct<BS)7

and the E' term of the associated spectral sequence is given by

E;,t ~ s+t<FsC*<f)/Fs—1C*<f)>

where the homology is computed with respect to the boundary

operator on the chain complex F,C.(f)/Fs_1C.(f) induced by
0=0)® -+ @y, Le. .




The associated spectral sequence 11

Since 9y = (—1)*0, where 9 is the “usual” boundary operator
from singular homology, the E! term of the spectral sequence is
given by

E;,t ~ s+t<FsC*<f)/Fs—1C*<f)> ~ Ht<BS)

where Hy(Bs) denotes homology of the chain complex
- 0y(By) 2 Cy(B,) A€y (By) 2 Co(By) 20,

Hence, the E' term of the spectral sequence is

H3(Bo) -2 Hy(By) - Hy(By) - Hy(B;)
Ho(Bo)- Ho(B1) -2 Ho(By) - Hy(B;)
Hy(By)- Hy(By) -~ Hy(By) - Hy(B;)

Hy(Bo) -2 Ho(By) - Hy(By) - Hy(Bs)

where dy denotes the following connecting homomorphism of the

triple <FSC*<f)7 FS—lC*(f)? FS—QC*(f)'

Ho i (FCof)) ForCulf)) 25 Hoyy 1 (Fo 1 Cu(f)] FasCul( )

The differentials dy and d; in the spectral sequence are induced
from the homomorphisms dy and 0y in the multicomplex. How-
ever, the differential d, for » > 2 is, in general, not induced from
the corresponding homomorphism 9, in the multicomplex |[J.M.
Boardman, “Conditionally convergent spectral sequences”].



The Austin—Braam approach (~1995)
(Modeled on deRham cohomology)

Let B; be the set of critical points of index ¢ and O/ = V(B;)
the set of j-forms on B;. Austin and Braam define maps

ar : CZ,] N Cz+r,j—r+1

for r =0,1,2,...,m which raise the “total degree” 7 + 7 by one.

9%3@%9%&)@%@»im@g)
2—190 0

QO

(90 82\

00(By) - 00(By) PR 00(By) TN (By

Note: Note that the above diagram is not a double complex be-
cause 07 # 0. However, it does determine a multicomplex [J.-P.
Meyer, “Acyclic models for multicomplexes”, Duke Math. J., 45
(1978), no. 1, p. 67-85; MR 0486489 (80h:55012)].)



The Austin—Braam cochain complex

The maps 0, : V(B;) — V7" Y B,,,) fit together to form a
cochain complex where 0 =0y & - - - b 0,, and

e

Ry

O(By) — QN (By) —Q*(By) —Q(By)
I I I I
Co(f)LCl(f)LCQ(f)LC:%(f)a—” ..

Theorem 2 (Austin-Braam) For any j =0,...,m

J
> 9;.0; =0.
=0

Hence, 0% = 0.
Note: 920y + 0101 + 0yds = 0. So, 3% # 0 in general.
Theorem 3 (Austin-Braam)

H(C*(f),) ~ H'(M;R)



Compactified moduli spaces

For any two critical submanifolds B and B’ the flow ¢; induces
an R-action on W*(B) N W?#(B'). Let

M(B,B") = (W"(B)NnW?*B")/R
be the quotient space of gradient flow lines from B to B’

Theorem 4 (Gluing) Suppose that B, B’, and B” are crit-
ical submanifolds such that W*(B) m W*(B') and W"(B’) m
W#(B"). In addition, assume that W"(x) th W*(B") for all
x € B'. Then for some ¢ > 0, there is an injective local
diffeomorphism

G: M(B,B) xg M(B',B") x (0,¢) — M(B, B")
onto an end of M(B, B").

Theorem 5 (Compactification) Assume that f : M — R
satisfies the Morse-Bott-Smale transversality condition. For
any two distinct critical submanifolds B and B’ the moduli
space M(B, B') has a compactification M(B,B'), consisting
of all the piecewise gradient flow lines from B to B, which is
a compact smooth manifold with corners of dimension A\g —
Ag+b—1. Moreover, the beginning and endpoint maps extend
to smooth maps

o_: M(B,B")— B

0, : M(B,B) — B,

where 0_ has the structure of a locally trivial fiber bundle.



Integration along the fiber

Let m : E — B be a fiber bundle where B is a closed manifold, a

typical fiber F'is a compact oriented d-dimensional manifold with
corners, and 7y : OF — B is also a fiber bundle with fiber OF. A
differential form on E' may be written locally as

(@) f(z, t)dt;y Ndtiy A~ AN dt;,

where ¢ is a form on B, x are coordinates on B, and the ¢; are
coordinates on F'.

Definition 4 Integration along the fiber
T VY (E) — Q7 B)
15 defined by

(T (@) f(x, t)dty Ndta A -+ Ndty) = gb/ flz, t)dty A -+ A dty
T (75 (P) f(x, t)dt;, Ndti, N--- ANdt;) = 0 szfr < d.
The beginning point map
o : M<Bi+ra Bi) — By,
is such a fiber bundle and we can pullback along the endpoint map
Oy : M(Biyr, B;) — B.
Definition 5 Define 0, : OV (B;) — "4 B;,,) by

dw r=20
or{w) = { (—1)(0.),(@w) £ 0.



An example of Morse-Bott cohomology

Consider S? = {(z,y,2) € R3| 22 + 9> + 2 = 1}, and let
f(x,y,z) = 2* Then By=FE ~ S, B, =0, and By = {n, s}.

n
/ 52 1

B2 —f> __0

B
\ : L,

@

ReR

0 2 0
o

y’

QO(sl)_aLQl(Sl) d (I)
Lk

COf) = CM(f) -2~ C2(f)*—

constant functions on S
HY(S*R)

The map 0, : Q'(S') — R @ R integrates a 1-form w over the
components of M(Bs, By) ~ S'II.5!, which have opposite orien-
tations. So,

ker d : Q°(S') — Q'(Sh

Q

Q

Balw) = (—1)(0-).(95w) = (¢, —0

for some ¢ € R, and H*(C*(f),0) ~ R*/R ~ R. If ¢ = 0,
then w is in the image of d : QY(SY) — QYSY), and hence
HY(C*(f),0) ~ 0.



The Banyaga—Hurtubise approach (~2007)

Modeled on cubical singular homology. Based on ideas from
Austin and Braam (~1995), Barraud and Cornea (~2004), Fukaya
(~1995), Weber (~2006) etc.

Step 1: Generalize the notion of singular p-simplexes to allow
maps from spaces other than the standard p-simplex AP C RPH
or the unit p-cube I? C RP. These generalizations of AP (or
I?) are called abstract topological chains, and the corresponding
singular chains are called singular topological chains.

Step 2: Show that the compactified moduli spaces of gradient
flow lines are abstract topological chains, i.e. show that 0 is
defined. Show that 0y extends to fibered products.

Step 3: Define the set of allowed domains C), in the Morse-
Bott-Smale chain complex as a collection of fibered products (with
0y defined) and show that the allowed domains are all compact
oriented smooth manifolds with corners.

Step 4: Define 0y, ..., 0, using fibered products of compact-
ified moduli spaces of gradient flow lines and the beginning and
endpoint maps. Define 0 = 0y® - - - P 0,, and show that dod = 0.

Step 5: Define orientation conventions on the elements of C, and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that 0 = 0y®- - -B9I,,
is compatible with the degeneracy relations.

Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C,(f), 0s) is independent of f: M — R.



The singular M-B-S chain complex

Let S7°(B;) be the set of smooth singular Cy-chains in B; (with re-
spect to the endpoint maps on moduli spaces), and let D°(B;) C
S,°(B;) be the subgroup of degenerate singular topological chains.

~

The chain complex (Cy(f), 0):

S§°(Ba) %0

o "\ g
% 9

SfO(Bl) So°( 1

@\ .

55°<Bo> Sfo(Bo) 580<Bo) N
| | |

Co(f)—2=C(f)—2=Co(f) 20

The Morse-Bott-Smale chain complex (Cy(f), 0):

S§°(B2)/ DF° (Ba) 0
® \\ ®
S°(By) /DOO (By)-DS(B,) D B1 v 0

S5° (BO)/DOO<BO (%SE?O /DOO<BO) So (Bo)/DSO(Bo)ﬂO
I I I

Ca(f) ° Ci(f) . Co(f)——0




Step 1: Generalize the notion of singular p-simplexes to allow
maps from spaces other than the standard p-simplex AP C RPH
or the unit p-cube I? C RP.

For each integer p > 0 fix a set C), of topological spaces, and let
S, be the free abelian group generated by the elements of C), i.e.
S, = Z[C,). Set S, ={0}if p<0or C,=10.

Definition 6 A boundary operator on the collection S, of groups
{S,} is a homomorphism 0, : S, — S,_1 such that

1.Forp > 1 and P € C, C S, 0,(P) = > . niP; where
n; = £1 and P, € Cp_1 15 a subspace of P for all k.

2.0,_100,:S5, = Sy_2 15 zero.

We call (S, 0.) a chain complex of abstract topological chains.
Elements of S, are called abstract topological chains of degree

P.
Definition 7 Let B be a topological space and p € Z,.. A
singular Cy,-space i B is a continuous map o : P — B
where P € C,, and the singular C,-chain group S,(B) is the
free abelian group generated by the singular C,-spaces. Define
Sy(B) = {0} if S, = {0} or B = 0. Elements of S,(B) are
called singular topological chains of degree p.

Note: These definitions are quite general. To construct the M-B-S
chain complex we really only need C), to include the p-dimensional
faces of an N-cube, the compactified moduli spaces of gradient flow
lines of dimension p, and the components of their fibered products
of dimension p.



For p > 1 there is a boundary operator 9, : S,(B) — S,_1(B)
induced from the boundary operator 0, : S, — S,—;. f o : P —
B is a singular C)-space in B, then 0,(o) is given by the formula

where

The pair (S,(B), 0s) is called a chain complex of singular topolog-
ical chains in B.

Singular N-cube chains

Pick some large positive integer N and let IV = {(zy,...,2x) €
RY 0 <z; <1, j=1,...,N} denote the unit N-cube. For
every 0 < p < N let C, be the set consisting of the faces of [ N
of dimension p, i.e. subsets of I where p of the coordinates are
free and the rest of the coordinates are fixed to be either 0 or 1.
For every 0 < p < N let .S, be the free abelian group generated
by the elements of C,. For P € C), we define

Z P|x_1—P|x_}€Sp_1

where z; denotes the jth free coordinate of P.



Singular cubical boundary operator (Massey)

The chain ¢ : I? — B has boundary
Oy(c)=(—1)[co Ay —0ogoBi]+[c0A; — 00 By
where the terms in the sum are all maps with domain 1! = [0, 1].

Topological cubical boundary operator (B—H)

The chain ¢ : I? — B has boundary

62<U) - <_1)[U|A1 - O|B1] + [U|A2 - O|B2]

and the degeneracy relations identify terms that are “essentially”
the same.




Recovering singular homology (degeneracy relations)

A continuous map op : P — B from a p-face P of IV into a
topological space B is a singular C)-space in B. The boundary
operator applied to op is

p

ap<O-P) — Z<_1)j [UP|xj:1 - O-Plsz:j:O} S Sp_1<B)

J=1
where O'p|3;j:() denotes the restriction op : P|xj:0 — B and
O'p|3;j:1 denotes the restriction op : P|xj:1 — B.

Definition 8 Let op and o be singular Cy-spaces in B and
let 9,(Q) = >.;n;Q; € Sp-1. For any map o : P — Q, let
Op(og)oa denote the formal sum ) ;nj(ogoa)|,-1q,- Define
the subgroup D,(B) C S,(B) of degenerate singular N -cube
chains to be the subgroup generated by the following elements.

1. If a 18 an orientation preserving homeomorphism such that
ogoa = op and Oy(og)oa = 0,(op), thenop—og € D,(B).

2. If op does not depend on some free coordinate of P, then
op € Dp<B)

Theorem 6 The boundary operator for singular N -cube chains
0p 1 Sp(B) — S,_1(B) descends to a homomorphism

Op - Sp(B)/Dy(B) — Sp-1(B)/Dp-1(B),
and
H,(S«(B)/D.(B),0.) ~ H,(B;Z)
for allp < N.



Step 2: Show that the compactified moduli spaces of gradient
flow lines are abstract topological chains, i.e. show that 0y is
defined. Show that 0y extends to fibered products.

Fibered products
Suppose that o1 : P, — Bisasingular S, -spaccand oy : » — B

is a singular S,,-space where (S, 0i) is a chain complex of abstract
topological chains. The fibered product of o7 and oy is

P1 X B P2 = {(561,562) - P1 X P2| O'1<£Cl) = O'Q(ZCQ)}.

This construction extends linearly to singular topological chains.

Definition 9 The degree of the fibered product P, Xpg P» is
defined to be p; +ps —b. The boundary operator applied to the
fibered product s defined to be

6<P1 ><BP2):6P1 XBP2_|_<_1)]91+5P1 ><36P2

where OP; and 0P, denote the boundary operator applied to
the abstract topological chains P, and Py. If o1 = 0, then we
define O X g Py = 0. Stmilarly, if oo =0, then P, xp 0 = 0.

Lemma 3 The fibered product of two singular topological chains
1s an abstract topological chain, i.e. the boundary operator on
fibered products is of degree -1 and satisfies 0 o 0 = 0. More-
over, the boundary operator on fibered products is associative,
i.€.

6((P1 X By P2) X By Pg) = 6<P1 X By <P2 X By P3)>



Proof that P, xp P, is an abstract topological chain
The degree of P, Xpg Py is p1 + po — 0.
Since 0 is a boundary operator on P, and P,, the degree of 0P

is p; — 1 and the degree of 0P, is po — 1. Hence both 0P, x g P
and P; X g OP, have degree p; +py — b — 1.

To see that 62(P1 x g P) = 0 we compute as follows.

6(6(P1 X B P2)> = 6(6P1 X B P2 + (-1)p1+bP1 X B 6P2)
= 62P1 X B P2 + (—1)p1_1+bﬁP1 X B 6P2 +
(—1)p1+b(6P1 X B 6P2 + (-1)p1+bP1 X B 62P2)
= 0.

Associativity
Given the data of a triple

o o o o
P1£>31 12 P2 22 B2 23 P3

we can form the iterated fibered product (P X g, P») X g, P5 using
093 and the map 099079 . P1 ><31P2 — ng where o . P1 ><31P2 —
P, denotes projection to the second component. That is, we have
the following diagram.

3
(P Xp, P») xp, P3----2--~ Py
\
T2 022
P1 X By P2 ——————— P2—>BQ




Compactified moduli spaces and 0,

Definition 10 Let B; be the set of critical points of index i.
For any j =1,...,7 we define the degree of M(B;, B;_;) to be
7+ b; — 1 and the boundary operator to be

OM(B;, Bi_j) = (=1)"" Y M(B;, B,) x5, M(B,, B;_;)
1—j<n<i

where b; = dim B; and the fibered product is taken over the

beginning and endpoint maps O— and OL. If B, = 0, then

M(B;, B,) = M(B,, B;_;) = 0.

Lemma 4 The degree and boundary operator for M(B;, Bi_j)

satisfy the axioms for abstract topological chains, i.e. the

boundary operator on the compactified moduli spaces is of de-

gree —1 and 0 o0 = 0.

Proof: Let d = deg M(B;, B,) =i —n+b; — 1. Then d(M(B;, B,) X, M(By, Bi_;))

= OM(B;, B,) xp, M(B,, Bi_;) + (=1 M(B;, B,,) x5, OM(B,, B;_;)

= (=1 Y M(B;, By, By, Bi_j) + (-1)""" >~ M(Bi, B, B, Bi_;)

n<s<i i—j<t<n

Therefore,

PM(B;, Bi_j) = (-1)”*’2‘[ > ((—1)”*’2' > M(Bi, B, By, Bij)+

i—j<n<i n<s<i

(_1)i+bi—1 Z m(3i73n73t73i_j)>]

i—j<t<n

_ (_1)i+bi [(_1)i+bi Z M(BinmBnyBi—j)‘l'

i—j<n<s<i

(=)t " M(Bi, By, By, Biy)

i—j<t<n<i




Step 3: Define the set of allowed domains C), in the Morse-
Bott-Smale chain complex as a collection of fibered products (with
0y defined) and show that the allowed domains are all compact
oriented smooth manifolds with corners.

For any p > 0 let C), be the set consisting of the faces of IV of
dimension p and the connected components of degree p of fibered
products of the form

Q sz'lM(Biw B;,) XBZQM(BQ? B;,) X B, X B

where m > i) > i > -+ > i, > 0, Q is a face of IV of dimension
q <p,o:Q — B issmooth, and the fibered products are taken
with respect to o and the beginning and endpoint maps.

M<Bin—1 ) Bln)

n—1

Theorem 7 The elements of C),, are compact oriented smooth
manifolds with corners, and there is a boundary operator

6 : Sp — Sp_l
where S, is the free abelian group generated by the elements

of C).

Let S)°(B;) denote the subgroup of the singular C)-chain group
Sy(B;) generated by those maps ¢ : P — B; that satisfy the
following two conditions:

1. The map o is smooth.

2.1t P € C), is a connected component of a fibered product,
then ¢ = 0, o m, where 7 denotes projection onto the last
component of the fibered product.

Define 0y : S3°(B;) — S3°1(B;) by 0y = (—1)P*'0.



Step 4: Define 0y, ..., 0, using fibered products of compact-
ified moduli spaces of gradient flow lines and the beginning and
endpoint maps. Define 0 = 0y® - - - P 0,, and show that dod = 0.

I[fo: P — B;is asingular Cy-space in S;°(B;), then for any
J = 1,...,7 composing the projection map my onto the second
component of P xp M(DB;, B,_;) with the endpoint map J; :

M(B;, B;_;) — B;_; gives a map
P sz’ M(BZ', Bz’—j) £> _<Bi7 Bi—j) i Bz’—j-

The next lemma shows that restricting this map to the connected
components of the fibered product P x . M(B;, B;_;) and adding
these restrictions (with the sign determined by the orientation
when the dimension of a component is zero) defines an element

0j(0) € S5 1(Biy).

Lemma 5 If 0 : P — B; is a singular Cy-space in S;°(B;),
then for any j = 1,...,1 adding the components of P Xp,

M(B;, Bi_;) (with sign when the dimension of a component is
zero) yields an abstract topological chain of degree p + j — 1.
That s, we can identify

P X B; M(BZ', Bz’—j) < Sp+j—1-

Thus, for all j =1,...,1 there is an induced homomorphism
0; - S,°(Bi) — Sp%4(Bi-))

which decreases the Morse-Bott degree p+ 1 by 1.



Proposition 1 For every 3 =0,...,m

J
> 00— =0.
q=0

Proof: When ¢ = 0 we compute as follows.
00(9;(P)) = 0y (P x 5, M(B;, Bi;))
= (=P (0P x g, M(B;, Bi—;) + (=1)"*"P x . OM(B;, B;_;)
= (=1)P" 9P xp M(B;, Bi_;) +
(=1t N P M(By, By) %, M(By, Bi_;)

i—j<n<i
If1<qg<j—1, then
04(0j—¢(P)) = P x5, M(Bi, Bi—j+q) X5,

ing M(Bi_jiq, Bi_j)
and it ¢ = 4, then
3)(d0(P)) = (~1)"""0P x5, M(B,, B,

Summing these expressions gives the desired result.

~

Corollary 1 The pair (Ci(f),0) is a chain complez, i.e.
0od=0.



Step 5: Define orientation conventions on the elements of C, and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that 0 = 0y®- - -B9I,,
is compatible with the degeneracy relations.

Definition 11 (Degeneracy Relations for the Morse-Bott-Smale Chain Complex)
Let op,0q € S)°(B;) be singular Cy-spaces in B; and let 0Q = _;n;Q; € Sy,1. For any
map o : P — Q, let Qyoqoa denote the formal sum (—1)P*' 3" . nj(ogoa)|a1(q,). Define

the subgroup D;°(B;) C S;°(B;) of degenerate singular topological chains to be the
subgroup generated by the following elements.

1. If o is an orientation preserving homeomorphism such that og oo = op and Oyog ©
a = yop, then op —og € D)°(B;).

2. If P is a face of IV and op does not depend on some free coordinate of P, then
op € DX(B;) and 9;(op) € D)5, 1(Bi—j) forall j=1,...,m.

3. If P and Q) are connected components of some fibered products and o s an orientation
reversing map such that ogoa = op and Oyog oo = Oyop, then op+o0g € DSO(BZ-).

4. If Q is a face of IY and R is a connected component of a fibered product
Q XBil M(B'h’ BZQ) XBz'Q M(Bizv Bls) XBig o Xp; M(Binflv an)

such that deg R > dim B, , then op € DX*(B;,) and 0;(or) € D}, (B;,—;) for all
3=0,...,m.

5. If Y7 naos € Si(R) is a smooth singular chain in a connected component R of a
fibered product (as in (4)) that represents the fundamental class of R and

(—1)7"”"(9003 — Z na0(oRr © 04)

15 in the group generated by the elements satisfying one of the above conditions, then

oR — Zna(JR 00,) € DX(B;,)

(%

and
0; (O’R — Z na(oR © Ua)) < D;??i-j—l(Bin—j)

forallj=1,...,m.



Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C,(f), 0s) is independent of f: M — R.

Given two Morse-Bott-Smale functions fi, fo : M — R we pick a
smooth function Fb; : M X R — R meeting certain transversality
requirements such that

lim F21<ZC t) — f1<ZC)

t——00

tiliﬂooFm(xat) = folz) —

for all x € M. The compactified moduli spaces of gradient flow
lines of Fy (the time dependent gradient flow lines) are used to
define a chain map (Fo1)g @ Ci(f1) — Ci(fo), where (Ci(f%),0)
is the Morse-Bott chain complex of f;. for k£ =1, 2.

Next we consider the case where we have four Morse-Bott-Smale
functions fr : M — R where k = 1,2, 3, 4, and we pick a smooth
function H : M x R x R — R meeting certain transversality
requirements such that

S——00 t——+00

Sgr_noo tiir_noo H(xz,s,t) = filz)+2
SES—DOO tEr_noo H(xz,s,t) = fo(x)
lim lim H(z,s,t) = f3(z)
(z,5,t) = falz) -

Jalw) — 2

lim lim H(x,s,
s—+00 t—+00

for all x € M.



H=f; H=f,—2

v

H=fi+2 s H=F,

The compactified moduli spaces of gradient flow lines of H are
used to define a chain homotopy between (Fy3)g o (F31)o and
(Fyo)o o (Fb1)o where (Fii)o @ Cu(fr) — Ci(fy) is the map de-
fined above for k,1 = 1,2,3,4. In homology the map (Fjj)« :
H.(Cy(fr),0) — H.(CL(f1),0) is the identity for all k£, and hence

(Fi2)s 0 (Fo1)s = (F11)s 0 (F11)s = id
(Fo1)s 0 (Fi2)« = (Fa)s 0 (Fa)s = 1d.

Therefore,

<F21)* ) H*<C*<f1)7a) — H*<C*<f2)7a)

is an isomorphism.

Theorem 8 (Morse-Bott Homology Theorem) The ho-
mology of the Morse-Bott chain complex (C.(f),0) is indepen-
dent of the Morse-Bott-Smale function f : M — R. There-
fore,

H.(C.(f),9) = H.(M; Z).



An example of Morse-Bott homology

Consider M = 5% = {(z,y,2) € R3| 2% + y* + 2° = 1}, and let
f(x,y,z) = 2°. Then By~ S', By =0, and By = {n, s}.

/ 52 1
) — > 10

L1

The degeneracy conditions imply
S0 (B2)/ D" (B2) =< n,s >~ L ® L,
and S>°(By)/D*(Ba) = 0 for p > 0.

<n,s> ‘Z? 0
o - 1 o

09 9
0 o 0 0
S5°(Bo)/ D3°(Bo) —~S7°(Bo)/ D (Bo) —~S5°(Bo)/ Dg°(Bo) —~0
H H H
Ca(f) a Ci(f) a Co(f)—2—0

The group S°(By)/D°(By) is non-trivial for all k& < N, but
Hi(Ci(f),0) = 0 if k > 2 and 0y : S3°(By)/D(By) —
S (By)/ D3 (By) maps onto the kernel of the boundary operator
Oy : S3°(By)/D3°(By) — S{°(By)/Di°(By) because the bottom
row in the above diagram computes the smooth integral singular
homology of By ~ S*.




The moduli space M(Bs, By) is a disjoint union of two copies of
S with opposite orientations. This moduli space can be viewed

as a subset of the manifold S? since M(Bsy, By) = M(Bs, By).

./\_/l(BQ,Bo) !’ O
\ S X32 ./W(

T here_is an orientation reversing map o : n X, M(BQ, By) —
s Xy M(Bsy, By) such that 0(n) o a = 95(s). Since 0y(0z(n)) =
0p(0s2(s)) = 0, the degeneracy conditions imply that

62<7”L + S) = 62<7”L) + 62<S) =0 & Sl(BO)/Dl(BO)

They also imply that dy maps either n or s onto a representative
of the generator of

ker 60 . S?(BQ)/D?%BO) — S(C;O(BQ)/D80<BQ)
im o : 55°(Bo)/D3*(Bo) — S7°(Bo)/Di*(Bo)

depending on the orientation chosen for By. Therefore,

H}{(C*(f),a):{z if k=0,2

0 otherwise.

~ H\(SYZ)~ Z
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Examples with fibered products

Fibered products of simplicial complexes
Let f:0,1] — [0, 1] x [—1, 1] be given by
= [ e~ sin(m/t)) if t #0
(0,0) ift=20
and ¢ : [0, 1] x [0, 1] — [0, 1] x [—1, 1] be given by g(x, y) = (x, 0).
Then f and g are maps between finite simplicial complexes whose
fibered product [0, 1] x (7.4 [0,1] x |0,1] =
[(t,4,0) € [0,1] x [0,1]  [0,1)] £ =0,1,1/2,1/3,..}

is not a finite simplicial complex.
Perturbations and fibered products

A ]

A non-transverse Two transverse
point of intersection points of intersections

_ L

N . . . One transverse
o Intersection points point of intersection

If f: PL— Bandg: P — B donot meet transversally, and we
perturb f to f : P, — B so that f and ¢ do meet transversally,
then the fibered product

Prx (g P
might depend on the perturbation.



Triangulations and fibered products

Having triangulations on two spaces does not immediately induce
a triangulation on the fibered product. In fact, there are simple
diagrams of polyhedra and piecewise linear maps for which the
diagram is not triangulable:

rREPLQ

There may not exist triangulations of P, (), and R with respect
to which both f and g are simplicial. [J.L. Bryant, Triangulation
and general position of PL diagrams, Top. App. 34 (1990),
211-233]

The Banyaga-Hurtubise approach

1. Work in the category of compact smooth manifolds with cor-
ners instead of the category of finite simplicial complexes.

2. They prove that all of the relevant fibered products are com-
pact smooth manifolds with corners.

3. They prove that it is not necessary to perturb the beginning
and endpoint maps to achieve transversality. So, they don'’t
have to worry about the fibered products changing under per-
turbations.

4. They don’t have to deal with any issues involving triangu-
lations because their approach allows singular chains whose
domains are spaces more general than a simplex.



