

# Lichnerowicz cohomology and twisted Morse cohomology

David Hurtubise

Penn State Altoona  
[altoona.psu.edu/math](http://altoona.psu.edu/math)

Florida International University  
January 5<sup>th</sup>, 2017

Joint work with Augustin Banyaga and Peter Spaeth

## 1 Lichnerowicz cohomology

- The Lichnerowicz cochain complex
- LCS manifolds
- Invariance of Lichnerowicz cohomology
- Proof of invariance for Lichnerowicz cohomology

## 2 Moduli spaces of gradient flow lines

- Spaces of gradient flow lines
- Compactified moduli spaces
- $\eta$ -twisted Morse homology
- Invariance of  $\eta$ -twisted Morse homology

## 3 $\eta$ -twisted Morse cohomology

- Local coefficients
- The local coefficient system  $e^\eta$
- $\eta$ -twisted Morse-Smale-Witten cochain complex

## 4 The equivalence

- The main theorem
- Regular CW-complexes

# The Lichnerowicz cochain complex

A closed 1-form  $\eta \in \Omega_{cl}^1(M; \mathbb{R})$  on a finite dimensional smooth manifold  $M$  can be used to twist the differential of the de Rham cochain complex as follows. For any  $p$ -form  $\xi \in \Omega^p(M; \mathbb{R})$  define

$$d_\eta \xi = d\xi + \eta \wedge \xi.$$

It is easy to verify that  $d_\eta \circ d_\eta = 0$ , and hence  $d_\eta$  defines a cochain complex

$$\Omega^0(M; \mathbb{R}) \xrightarrow{d_\eta} \Omega^1(M; \mathbb{R}) \xrightarrow{d_\eta} \Omega^2(M; \mathbb{R}) \xrightarrow{d_\eta} \dots$$

called the Lichnerowicz cochain complex. The homology of this complex is called the **Lichnerowicz cohomology**  $H_\eta^*(M)$ .

Since  $\eta \in H^1(M; \mathbb{R})$  is closed, for every  $\xi \in H^*(M; \mathbb{R})$  we have

$$\begin{aligned}
 d_\eta(d_\eta(\xi)) &= d_\eta(d\xi + \eta \wedge \xi) \\
 &= d(d\xi + \eta \wedge \xi) + \eta \wedge (d\xi + \eta \wedge \xi) \\
 &= d\eta \wedge \xi - \eta \wedge d\xi + \eta \wedge d\xi \\
 &= 0.
 \end{aligned}$$

If  $\eta = dh$  is exact, then

$$\begin{aligned}
 e^{-h}d(e^h\xi) &= e^{-h}(e^h dh \wedge \xi + e^h d\xi) \\
 &= dh \wedge \xi + d\xi \\
 &= d\xi + \eta \wedge \xi = d_\eta \xi,
 \end{aligned}$$

which shows that  $d_\eta$  is a generalization of the Witten deformation to closed 1-forms.

# Locally conformal symplectic manifolds

## Definition

A **locally conformal symplectic (LCS)** form  $\Omega$  on a finite dimensional smooth manifold  $M$  is a smooth nondegenerate 2-form such that there exists an open cover  $\mathcal{U} = \{U_i\}_{i \in I}$  of  $M$  and smooth positive functions  $\lambda_i > 0$  on each  $U_i$  such that  $\lambda_i \Omega|_{U_i}$  is a symplectic form on  $U_i$ , i.e.  $\lambda_i \Omega|_{U_i}$  is closed.

## Proposition

*If  $(M, \Omega)$  is an LCS manifold, then the forms  $\{d(\ln \lambda_i)\}_{i \in I}$  fit together to give a smooth closed 1-form  $\eta$  such that  $d\Omega = -\eta \wedge \Omega$ , and  $\eta$  is uniquely determined by the nondegenerate 2-form  $\Omega$ . Conversely, if  $\Omega$  is a nondegenerate 2-form on a smooth manifold  $M$  such that  $d\Omega = -\eta \wedge \Omega$  for some closed 1-form  $\eta$ , then  $\Omega$  is LCS.*

# Conformally equivalent LCS manifolds

## Definition

The smooth closed 1-form  $\eta$  such that  $d\Omega = -\eta \wedge \Omega$  is called the **Lee form** associated to the LCS 2-form  $\Omega$ .

Two LCS forms  $\Omega$  and  $\Omega'$  on  $M$  are said to be **conformally equivalent** if and only if there exists a smooth positive function  $h > 0$  such that  $\Omega' = h\Omega$ .

## Proposition

If  $\Omega$  is an LCS form on a finite dimensional smooth manifold  $M$  with associated Lee form  $\eta$  and  $\Omega' = h\Omega$  for some smooth positive function  $h > 0$ , then the Lee form associated to  $\Omega'$  is  $\eta - d(\ln h)$ . Thus, the de Rham cohomology class of the Lee form

$[\eta] \in H_{dR}^*(M; \mathbb{R})$  is an invariant of the conformal class of  $\Omega$ .

# Invariance of Lichnerowicz cohomology

## Theorem

For any finite dimensional smooth manifold  $M$ , the Lichnerowicz cohomology groups  $H_{\eta}^*(M)$  depend only on the cohomology class  $[\eta] \in H_{dR}^*(M; \mathbb{R})$ . In particular, if  $\eta$  is exact then the Lichnerowicz cohomology groups are isomorphic to the de Rham cohomology groups, i.e.  $H_{\eta}^k(M) \approx H_{dR}^k(M; \mathbb{R})$  for all  $k = 0, \dots, m$ .

This is a generalization of Proposition 4.4 in [Manuel de León, Belén López, Juan C. Marrero, and Edith Padrón, *On the computation of the Lichnerowicz-Jacobi cohomology*, J. Geom. Phys. **44** (2003), no. 4, 507–522; MR 1943175].

# Proof of invariance for Lichnerowicz cohomology

Every smooth exact 1-form  $df$  can be written as  $dh/h$  for some smooth positive function  $h > 0$  by setting  $h = e^f$ . So, if  $\eta$  and  $\eta'$  are closed 1-forms on  $M$  with  $[\eta] = [\eta'] \in H_{\text{dR}}^1(M; \mathbb{R})$ , then there exists a smooth positive function  $h : M \rightarrow \mathbb{R}$  such that  $\eta' = \eta + dh/h$ . Define isomorphisms  $\phi, \psi : \Omega^k(M; \mathbb{R}) \rightarrow \Omega^k(M; \mathbb{R})$  by  $\phi(\xi) = \xi/h$  and  $\psi(\xi) = h\xi$  for all  $k = 0, \dots, m$ .

$$\begin{aligned}
 d_{\eta'}(\phi(\xi)) &= d\left(\frac{1}{h}\xi\right) + \left(\eta + \frac{dh}{h}\right) \wedge \frac{1}{h}\xi \\
 &= -\frac{1}{h^2}dh \wedge \xi + \frac{1}{h}d\xi + \eta \wedge \frac{1}{h}\xi + \frac{1}{h^2}dh \wedge \xi \\
 &= \frac{1}{h}(d\xi + \eta \wedge \xi) \\
 &= \phi(d_\eta \xi).
 \end{aligned}$$

## Proof continued

Similarly,

$$\begin{aligned}
 d_\eta(\psi(\xi)) &= d(h\xi) + \eta \wedge h\xi \\
 &= dh \wedge \xi + hd\xi + \eta \wedge h\xi \\
 &= h \left( d\xi + \eta \wedge \xi + \frac{dh}{h} \wedge \xi \right) \\
 &= \psi(d_{\eta'}\xi).
 \end{aligned}$$

Thus,  $\phi : (\Omega^*(M; \mathbb{R}), d_\eta) \rightarrow (\Omega^*(M; \mathbb{R}), d_{\eta'})$  and  
 $\psi : (\Omega^*(M; \mathbb{R}), d_{\eta'}) \rightarrow (\Omega^*(M; \mathbb{R}), d_\eta)$  are chain equivalences and

$$\phi_* : H_k(\Omega^*(M; \mathbb{R}), d_\eta) \rightarrow H_k(\Omega^*(M; \mathbb{R}), d_{\eta'})$$

is an isomorphism for all  $k = 0, \dots, m$  with inverse  $\psi_*$ .

□

## Morse-Smale functions

Let  $f : M \rightarrow \mathbb{R}$  be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold  $(M, \alpha)$ . Let  $Cr(f) = \{p \in M \mid df_p = 0\}$  denote the set of critical points of  $f$ , and for any  $p \in Cr(f)$  let  $\lambda_p$  denote the index of  $p$ . For  $p, q \in Cr(f)$  let  $W^u(q) \subset M$  be the unstable manifold of  $q$ ,  $W^s(p) \subset M$  the stable manifold of  $p$ , and define

$$W(q, p) = W^u(q) \pitchfork W^s(p) \subset M.$$

If this space is nonempty, then one says that  $q$  is succeeded by  $p$ , i.e.  $q \succeq p$ . In this case,  $W(q, p)$  is a noncompact smooth manifold of dimension  $\lambda_q - \lambda_p$  by the Morse-Smale transversality condition.

## Oriented moduli spaces of gradient flow lines

Choosing orientations for all the unstable manifolds  $W^u(q)$  determines an orientation on  $W(q, p)$  for all  $p, q \in Cr(f)$  via

$$T_* W(q, p) \hookrightarrow T_* W^u(q)|_{W(q, p)} \longrightarrow \nu_*(W(q, p), W^u(q))|_{W(q, p)},$$

where the fibers of the normal bundle are canonically isomorphic to  $T_p W^u(p)$  via the gradient flow.

The  $\lambda_q - \lambda_p - 1$  manifold  $\mathcal{M}(q, p) = W(q, p)/\mathbb{R}$  is then oriented by choosing any regular value  $y$  between  $f(p)$  and  $f(q)$ , identifying  $\mathcal{M}(q, p) = W(q, p) \cap f^{-1}(y)$ , and for any  $x \in W(q, p) \cap f^{-1}(y)$  declaring  $B_x$  to be a positive basis for  $T_x \mathcal{M}(q, p)$  if and only if  $(-\nabla f)(x), B_x$  is a positive basis for  $T_x W(q, p)$ .

# Compactified moduli spaces as manifolds with corners

The moduli space  $\mathcal{M}(q, p)$  has a compactification  $\overline{\mathcal{M}}(q, p)$  consisting of the piecewise gradient flow lines from  $q$  to  $p$ , which can be given the structure of a smooth manifold with corners [D. Burghelea, L. Friedlander, S. Haller, T. Kappeler, F. Latour, L. Qin].

We orient the (codimension) 1-stratum using the convention that an outward pointing normal vector field followed by a positive basis for a tangent space of  $\partial^1\overline{\mathcal{M}}(q, p)$  should be a positive basis for a tangent space of  $\overline{\mathcal{M}}(q, p)$ .

## Path components of unparameterized gradient flow lines

A piecewise gradient flow line from  $q$  to  $p$  can be identified with its image in  $M$ , which is an element of  $\mathcal{P}^c(M)$ , the space of all nonempty closed subsets of  $M$  with the Hausdorff topology. This identification is compatible with the topology of the smooth manifold with corners  $\overline{\mathcal{M}}(q, p)$  in the sense that the map that sends an element of  $\nu \in \overline{\mathcal{M}}(q, p)$  to its image  $Im(\nu)$  is a homeomorphism onto its image  $Im(\overline{\mathcal{M}}(q, p))$  in  $\mathcal{P}^c(M)$ . Write  $[(\nu_1, \dots, \nu_l)] = [\nu]$  to indicate that the image of the piecewise gradient flow line  $(\nu_1, \dots, \nu_l)$

$$Im(\nu_1, \dots, \nu_l) = Im(\gamma_1, \dots, \gamma_l) = \bigcup_{j=1}^l \gamma_j(\mathbb{R}) \in \mathcal{P}^c(M)$$

is in the same path component as  $Im(\nu)$  in  $Im(\overline{\mathcal{M}}(q, p)) \subset \mathcal{P}^c(M)$ .

## Lemma (Orientations for relative index 2 moduli spaces)

Let  $r, p \in Cr(f)$ . If  $\nu \in \mathcal{M}(r, p)$ , then the closure of  $\mathcal{M}(r, p; [\nu])$  in  $\overline{\mathcal{M}}(r, p)$  consists of the piecewise gradient flow lines from  $r$  to  $p$  that are in the same path component as  $\nu$ . Moreover, when  $\lambda_r - \lambda_p = 2$  we have

$$\partial \overline{\mathcal{M}}(r, p; [\nu]) = (-1) \bigcup_{\substack{r \succeq q \succeq p \\ [\nu] = [(\nu_1, \nu_2)]}} \mathcal{M}(r, q; [\nu_1]) \times \mathcal{M}(q, p; [\nu_2])$$

as oriented manifolds. Thus when  $\lambda_r - \lambda_p = 2$ ,

$$\sum_{r \succeq q \succeq p} \sum_{\substack{[\nu] = [(\nu_1, \nu_2)] \\ (\nu_1, \nu_2) \in \mathcal{M}(r, q) \times \mathcal{M}(q, p)}} \epsilon(\nu_1) \epsilon(\nu_2) = 0$$

where  $\epsilon(\nu_j) = \pm 1$  is the sign of  $\nu_j$  for  $j = 1, 2$ .

## Definition ( $\eta$ -twisted Morse-Smale-Witten chain complex)

Let  $f : M \rightarrow \mathbb{R}$  be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold  $(M, \alpha)$ , fix orientations on the unstable manifolds of  $(f, \alpha)$ , and let  $\eta \in \Omega_{\text{cl}}^1(M, \mathbb{R})$ . The  **$\eta$ -twisted Morse-Smale-Witten chain complex** is defined to be the chain complex with chain groups  $C_k(f) \otimes \mathbb{R}$ , where  $C_k(f)$  is the free abelian group generated by the critical points  $q$  of index  $k$ , and the homomorphism  $\partial_k^\eta : C_k(f) \otimes \mathbb{R} \rightarrow C_{k-1}(f) \otimes \mathbb{R}$  is defined on a critical point by

$$\partial_k^\eta(q) = \sum_{p \in Cr_{k-1}(f)} \sum_{\nu \in \mathcal{M}(q, p)} \epsilon(\nu) \exp \left( \int_{\overline{\mathbb{R}}} \gamma_\nu^*(\eta) \right) p,$$

where  $\gamma_\nu : \overline{\mathbb{R}} \rightarrow M$  is any gradient flow line from  $q$  to  $p$  parameterizing  $\nu \in \mathcal{M}(q, p)$  and  $\epsilon(\nu) = \pm 1$ .

## Lemma

*The pair  $(C_*(f) \otimes \mathbb{R}, \partial_*^\eta)$  is a chain complex, i.e.  $(\partial_*^\eta)^2 = 0$ .*

Proof: Let  $r \in Cr(f)$  with  $\lambda_r = k + 1$  for some  $k = 1, \dots, m - 1$ , where  $m = \dim M$ . We have  $\partial_k^\eta(\partial_{k+1}^\eta(r))$

$$\begin{aligned}
 &= \partial_k^\eta \left( \sum_{q \in Cr_k(f)} \sum_{\nu_1 \in \mathcal{M}(r, q)} \exp \left( \int_{\mathbb{R}} \gamma_{\nu_1}^*(\eta) \right) \epsilon(\nu_1) q \right) \\
 &= \sum_{q \in Cr_k(f)} \sum_{\nu_1 \in \mathcal{M}(r, q)} \exp \left( \int_{\mathbb{R}} \gamma_{\nu_1}^*(\eta) \right) \epsilon(\nu_1) \partial_k^\eta(q) \\
 &= \sum_{q \in Cr_k(f)} \sum_{\nu_1 \in \mathcal{M}(r, q)} \exp \left( \int_{\mathbb{R}} \gamma_{\nu_1}^*(\eta) \right) \epsilon(\nu_1) \sum_{p \in Cr_{k-1}(f)} \sum_{\nu_2 \in \mathcal{M}(q, p)} \exp \left( \int_{\mathbb{R}} \gamma_{\nu_2}^*(\eta) \right) \epsilon(\nu_2) p \\
 &= \sum_{p \in Cr_{k-1}(f)} \sum_{q \in Cr_k(f)} \sum_{\nu_1 \in \mathcal{M}(r, q)} \sum_{\nu_2 \in \mathcal{M}(q, p)} \exp \left( \int_{\mathbb{R}} \gamma_{\nu_1}^*(\eta) + \int_{\mathbb{R}} \gamma_{\nu_2}^*(\eta) \right) \epsilon(\nu_1) \epsilon(\nu_2) p.
 \end{aligned}$$

## Proof continued

Now fix  $p \in Cr_{k-1}(f)$  and consider the coefficient in front of  $p$ .

$$\begin{aligned} \text{coef}(p) &= \sum_{q \in Cr_k(f)} \sum_{\nu_1 \in \mathcal{M}(r, q)} \sum_{\nu_2 \in \mathcal{M}(q, p)} \exp \left( \int_{\overline{\mathbb{R}}} \gamma_{\nu_1}^*(\eta) + \int_{\overline{\mathbb{R}}} \gamma_{\nu_2}^*(\eta) \right) \epsilon(\nu_1) \epsilon(\nu_2) \\ &= \sum_{q \in Cr_k(f)} \sum_{(\nu_1, \nu_2) \in \mathcal{M}(r, q) \times \mathcal{M}(q, p)} \exp \left( \int_{\overline{\mathbb{R}}} \gamma_{(\nu_1, \nu_2)}^*(\eta) \right) \epsilon(\nu_1) \epsilon(\nu_2) \end{aligned}$$

where  $\gamma_{(\nu_1, \nu_2)} : \overline{\mathbb{R}} \rightarrow M$  is any piecewise smooth curve parameterizing the broken gradient flow line  $(\nu_1, \nu_2)$  from  $r$  to  $p$ . We now group the terms in the above sum according to the various path components  $[\nu]$  of  $\overline{\mathcal{M}}(r, p)$  and use the fact that the integral is constant on each such path component.

## Proof continued

This gives terms of the form

$$\exp\left(\int_{\overline{\mathbb{R}}} \gamma^*(\eta)\right) \sum_{q \in Cr_k(f)} \sum_{\substack{[\nu] = [(\nu_1, \nu_2)] \\ (\nu_1, \nu_2) \in \mathcal{M}(r, q) \times \mathcal{M}(q, p)}} \epsilon(\nu_1) \epsilon(\nu_2)$$

where  $\gamma : \overline{\mathbb{R}} \rightarrow M$  is any piecewise smooth curve parameterizing an element of  $\overline{\mathcal{M}}(r, p; [\nu])$  from  $r$  to  $p$ . These terms are zero by the lemma on the boundary of moduli spaces of gradient flow lines between critical points of relative index 2.

□

# Invariance of $\eta$ -twisted Morse homology

## Theorem (Banyaga, H-, Spaeth)

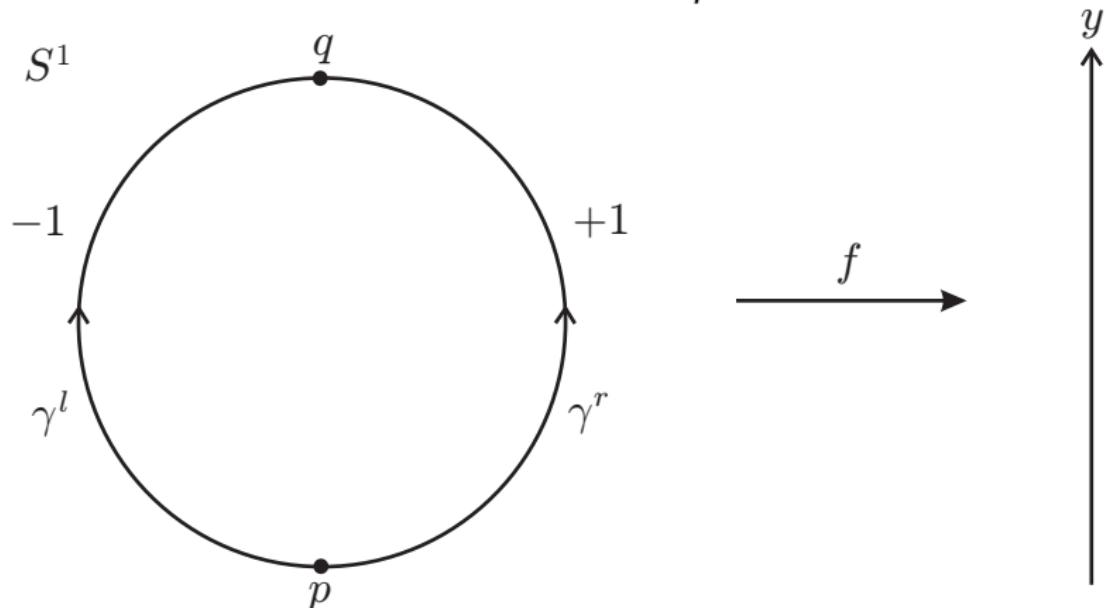
Let  $\eta \in \Omega_{cl}^1(M, \mathbb{R})$  be a closed one form on a Riemannian manifold  $(M, \alpha)$ . Then the homology of the  $\eta$ -twisted Morse-Smale-Witten chain complex  $(C_*(f) \otimes \mathbb{R}, \partial_*^\eta)$  is independent of the Morse-Smale pair  $(f, \alpha)$  and depends only on the de Rham cohomology class of  $\eta$ .

## Corollary

Let  $(M, \Omega)$  be a closed, smooth, finite dimensional LCS manifold with Lee form  $\eta \in \Omega_{cl}^1(M; \mathbb{R})$ . Then the  $\eta$ -twisted Morse homology groups  $H_*((C_*(f) \otimes \mathbb{R}, \partial_*^\eta))$  are an invariant of the conformal class of  $\Omega$ .

# The height function $f : S^1 \rightarrow \mathbb{R}$

The height function on  $S^1 \subset \mathbb{R}^2$  has a critical point  $q$  of index 1 and a critical point  $p$  of index 0. Orient the unstable manifold of  $q$  clockwise and the unstable manifold of  $p$  as +1.



# The height function $f : S^1 \rightarrow \mathbb{R}$

For a closed 1-form  $\eta$  on  $S^1$  the associated  $\eta$ -twisted Morse-Smale-Witten boundary operator is given by

$$\partial_1^\eta(q) = \left( \exp \left( \int_1^0 (\gamma^r)^*(\eta) \right) - \exp \left( \int_1^0 (\gamma^l)^*(\eta) \right) \right) p.$$

If  $\eta = dh$  is exact, then the integral of  $\eta$  along any path from  $q$  to  $p$  is  $h(q) - h(p)$ . Hence,

$$\partial_1^\eta(q) = \left( e^{h(q) - h(p)} - e^{h(q) - h(p)} \right) p = 0,$$

and  $H_*((C_*(f) \otimes \mathbb{R}), \partial_*^\eta) = H_*(S^1; \mathbb{R})$ .

If  $\eta$  is not exact, then  $\int_1^0 (\gamma^r)^*(\eta)$  is not equal to  $\int_1^0 (\gamma^l)^*(\eta)$ . In this case  $\partial_1^\eta(q) \neq 0$ , and  $H_k((C_*(f; \mathbb{R}), \partial_*^\eta)) = 0$  for all  $k$ . Explicitly, consider the form,

$$d\theta = \frac{1}{x^2 + y^2}(-ydx + xdy)$$

and the parameterization of  $S^1$  given by  $\gamma(t) = (\cos t, \sin t)$ . Then we have

$$\int_1^0 (\gamma^r)^*(d\theta) = \int_{\pi/2}^{-\pi/2} \sin^2 t + \cos^2 t \ dt = -\pi$$

and

$$\int_1^0 (\gamma^l)^*(d\theta) = \int_{\pi/2}^{3\pi/2} \sin^2 t + \cos^2 t \ dt = \pi.$$

Thus,  $\partial_1^\eta(q) = (e^{-\pi} - e^\pi)p \neq 0$ , and  $H_k((C_*(f) \otimes \mathbb{R}, \partial_*^\eta)) \approx 0$  for all  $k$ .

## Definition (Bundles of abelian groups)

A **bundle of abelian groups**  $G$  over a topological space  $X$  associates to every point  $x \in X$  an abelian group  $G_x$  and to every continuous path  $\gamma : [0, 1] \rightarrow X$  a homomorphism

$\gamma_* : G_{\gamma(1)} \rightarrow G_{\gamma(0)}$  such that the following conditions are satisfied.

- ① If two paths  $\gamma_1, \gamma_2 : [0, 1] \rightarrow X$  from  $x \in X$  to  $y \in X$  are homotopic rel endpoints, then the homomorphisms from  $G_y$  to  $G_x$  associated to  $\gamma_1$  and  $\gamma_2$  are the same, i.e.  $(\gamma_1)_* = (\gamma_2)_*$ .
- ② If  $\gamma : [0, 1] \rightarrow X$  is constant, then  $\gamma_*$  is the identity.
- ③ If  $\gamma_1, \gamma_2 : [0, 1] \rightarrow X$  are paths with  $\gamma_1(1) = \gamma_2(0)$ , then  $(\gamma_1\gamma_2)_* = (\gamma_1)_* \circ (\gamma_2)_*$ , where  $\gamma_1\gamma_2$  denotes the concatenation of  $\gamma_1$  and  $\gamma_2$ .

**Note:** If  $G$  is any abelian group and  $\gamma_*$  is the identity map for all paths  $\gamma : [0, 1] \rightarrow X$ , then associating  $G = G_x$  to every point  $x \in X$  determines a **constant** bundle of abelian groups.

## Definition (Isomorphic bundles)

Suppose that  $G_1$  and  $G_2$  are both bundles of abelian groups over a topological space  $X$ . If there exists a family of isomorphisms  $\Phi : G_1 \rightarrow G_2$  such that for every continuous path  $\gamma : [0, 1] \rightarrow X$  the diagram

$$\begin{array}{ccc} (G_1)_{\gamma(1)} & \xrightarrow{\gamma_*^{G_1}} & (G_1)_{\gamma(0)} \\ \Phi_{\gamma(1)} \downarrow & & \downarrow \Phi_{\gamma(0)} \\ (G_2)_{\gamma(1)} & \xrightarrow{\gamma_*^{G_2}} & (G_2)_{\gamma(0)} \end{array}$$

commutes, then  $G_1$  and  $G_2$  are said to be **isomorphic**.

**Note:** A bundle of abelian groups that is isomorphic to a constant bundle is called **simple**. A bundle of abelian groups  $G$  is simple if and only if for any  $x, y \in X$  the homomorphism  $\gamma_*$  is independent of the path  $\gamma$  from  $x$  to  $y$ .

# The local coefficient system $e^\eta$

## Definition

Let  $\eta \in \Omega_{\text{cl}}^1(M, \mathbb{R})$  be a closed smooth real valued 1-form on a closed finite dimensional smooth manifold  $M$ . To each point  $x \in M$  associate the additive abelian group  $\mathbb{R}$ , and to each smooth path  $\gamma : [0, 1] \rightarrow M$  associate the homomorphism  $\gamma_* : \mathbb{R}_{\gamma(1)} \rightarrow \mathbb{R}_{\gamma(0)}$

$$\gamma_*(s) = e^{\int_1^0 \gamma^*(\eta)} \cdot s \quad \text{for all } s \in \mathbb{R}.$$

Since every continuous path in  $M$  is homotopic rel endpoints to a smooth path, Stokes' Theorem shows that this defines a bundle of (additive)  $\mathbb{R}$  groups  $e^\eta$  over  $M$ , also known as a **flat line bundle**.

Note: The above definition of  $\gamma_*$  extends to paths  $\gamma : \overline{\mathbb{R}} \rightarrow M$  using any diffeomorphism  $\overline{\mathbb{R}} \approx [0, 1]$ .

$[\eta_1] = [\eta_2]$  implies  $e^{\eta_1} \approx e^{\eta_2}$

## Claim

If  $\eta_1, \eta_2 \in \Omega_{cl}^1(M, \mathbb{R})$  are in the same de Rham cohomology class, then  $e^{\eta_1}$  is isomorphic to  $e^{\eta_2}$ .

Proof: By assumption there exists a smooth function  $h : M \rightarrow \mathbb{R}$  with  $\eta_1 - \eta_2 = dh$ . Define a family of isomorphisms  $\Phi : e^{\eta_1} \rightarrow e^{\eta_2}$  by  $\Phi_x(s) = e^{-h(x)} \cdot s$  for all  $x \in M$  and  $s \in \mathbb{R}$ . Then the following diagram commutes for any path  $\gamma : [0, 1] \rightarrow \mathbb{R}$

$$\begin{array}{ccc}
 \mathbb{R} & \xrightarrow{\times e^{\int_1^0 \gamma^*(\eta_1)}} & \mathbb{R} \\
 \times e^{-h(\gamma(1))} \downarrow & & \downarrow \times e^{-h(\gamma(0))} \\
 \mathbb{R} & \xrightarrow{\times e^{\int_1^0 \gamma^*(\eta_2)}} & \mathbb{R}
 \end{array}$$

because  $e^{\int_1^0 \gamma^*(\eta_1)} = e^{\int_1^0 \gamma^*(\eta_2 + dh)} = e^{\int_1^0 \gamma^*(\eta_2)} e^{h(\gamma(0)) - h(\gamma(1))}$ .  $\square$

## Definition (Twisted Morse-Smale-Witten cochains)

Let  $f : M \rightarrow \mathbb{R}$  be a smooth Morse-Smale function on a closed smooth Riemannian manifold  $(M, \alpha)$  of dimension  $m < \infty$ . Fix orientations on the unstable manifolds of  $(f, \alpha)$ , and let  $G$  be a bundle of abelian groups over  $M$ . For any  $k = 0, \dots, m$ , a

**Morse-Smale-Witten  $k$ -cochain with coefficients in  $G$**  is defined to be a function  $\theta$  that assigns to each critical point  $p \in Cr_k(f)$  an element  $\theta(p) \in G_p$ . The  $k^{\text{th}}$  **Morse-Smale-Witten cochain group** is the collection of  $k$ -cochains, where the group operation is pointwise application of the group operation in  $G_p$ . Hence,

$$C^k(f; G) \approx \bigoplus_{p \in Cr_k(f)} G_p.$$

## Definition ( $\eta$ -twisted Morse-Smale-Witten cochain complex)

The  **$\eta$ -twisted Morse-Smale-Witten cochain complex** is the chain complex  $(C^*(f; e^\eta), \delta_k^\eta)$ , where  $\delta_k^\eta : C^k(f; e^\eta) \rightarrow C^{k+1}(f; e^\eta)$  is defined on a  $k$ -cochain  $\theta \in C^k(f; e^\eta)$  by

$$(\delta_k^\eta \theta)(q) = \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q, p)} \epsilon(\nu) \exp \left( \int_{\overline{\mathbb{R}}} (\gamma^\nu)^*(\eta) \right) \theta(p) \in e_q^\eta,$$

for any critical point  $q \in Cr_{k+1}(f)$ , where  $\gamma^\nu : \overline{\mathbb{R}} \rightarrow M$  is any continuous path from  $p$  to  $q$  whose image coincides with the image of  $\nu \in \mathcal{M}(q, p)$  and  $\epsilon(\nu) = \pm 1$  is the sign determined by the orientation on  $\mathcal{M}(q, p)$ .

The proof that  $\delta_{k+1}^\eta \circ \delta_k^\eta = 0$  is similar that of  $\partial_k^\eta \circ \partial_{k+1}^\eta = 0$ .

# The $\eta$ -Twisted Morse-Smale-Witten de Rham Theorem

## Theorem (Banyaga, H-, Spaeth)

Let  $f : M \rightarrow \mathbb{R}$  be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold  $(M, \alpha)$ . Fix orientations on the unstable manifolds of  $(f, \alpha)$  and assume that the unstable manifolds determine a regular CW-structure on  $M$ . For any  $\eta \in \Omega_{cl}^1(M, \mathbb{R})$ , the  $\eta$ -twisted Morse cohomology groups are isomorphic to the Lichnerowicz cohomology groups defined by  $-\eta$ , i.e.

$$H_k((C^*(f; e^\eta), \delta_*^\eta)) \approx H_{-\eta}^k(M)$$

for all  $k = 0, \dots, m$ .

# Regular CW-complexes

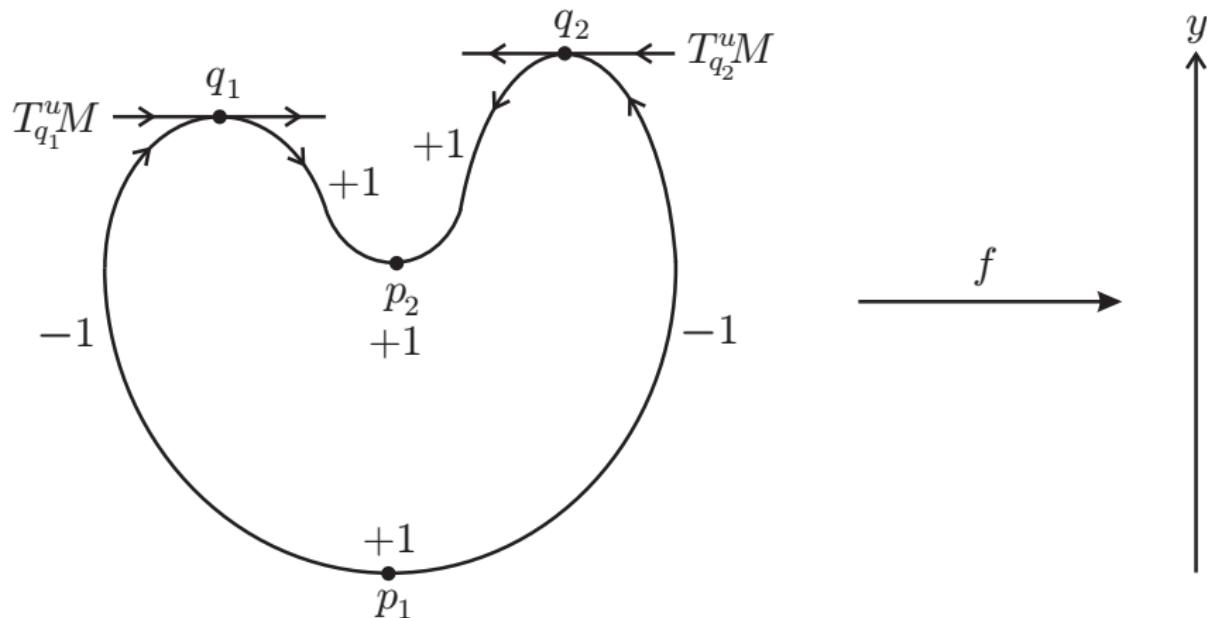
## Definition

A CW-complex  $X$  is **regular** if every closed  $k$ -cell  $e^k$ , with  $k > 0$ , is homeomorphic to  $\Delta^k$ .

Regular CW-complexes satisfy several properties which are not necessarily satisfied by nonregular CW-complexes. For instance,

- ① If  $j < k$  and  $e^j$  and  $e^k$  are cells such that  $e^j \cap e^k \neq \emptyset$ , then  $e^j \subset e^k$ .
- ② If  $e^k$  and  $e^{k+2}$  are cells such that  $e^k$  is a face of  $e^{k+2}$ , then there are exactly two  $(k+1)$ -cells  $e^{k+1}$  such that  $e^k$  is a proper face of  $e^{k+1}$  and  $e^{k+1}$  is a proper face of  $e^{k+2}$ , i.e.  $e^k < e^{k+1} < e^{k+2}$ .
- ③ The incidence number  $[e^k : e^{k-1}]$  is  $\pm 1$  if  $e^{k-1} < e^k$  and zero otherwise.

# A regular CW-structure on $S^1$

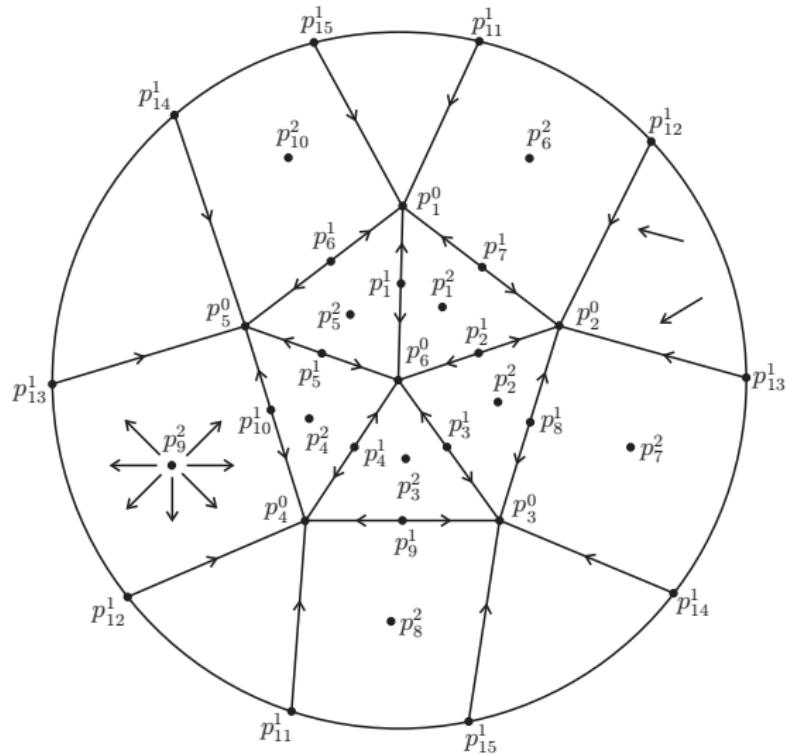


## Theorem (Banyaga, H-, Spaeth)

*On any closed finite dimensional smooth manifold  $M$  there exists a smooth Morse-Smale pair  $(f, \alpha)$  such that the unstable manifolds of  $(f, \alpha)$  determine a regular CW-structure on  $M$ . Moreover, the Riemannian metric  $\alpha$  can be chosen so that there are Morse charts of  $f$  around every critical point that are isometries with respect to the standard Euclidean metric on  $\mathbb{R}^m$ .*

Proof outline: Pick a triangulation of  $M$  fine enough so that every  $m$ -simplex is contained in a coordinate chart. Construct a Morse-Smale function with one critical point of index  $k$ , for every  $k$ -simplex for all  $k = 0, \dots, m$ , whose unstable manifolds mimic the triangulation.

# Unstable manifolds giving a regular CW-structure on $\mathbb{R}P^2$



# Mapping $k$ -forms to Morse-Smale-Witten $k$ -cochains

Fix any  $\eta \in \Omega_{\text{cl}}^1(M, \mathbb{R})$  and note that for any  $p \in Cr(f)$  the set  $U_p \stackrel{\text{def}}{=} \overline{W^u(p)}$  is simply connected since the unstable manifolds of  $(f, \alpha)$  determine a regular CW-structure on  $M$ . So,  $-\eta|_{U_p}$  is exact and  $-\eta|_{U_p} = dh/h$  for some smooth positive function  $h : U_p \rightarrow \mathbb{R}$ , if  $k = 1, \dots, m$ . For any  $\xi \in \Omega^k(M; \mathbb{R})$ , where  $1 \leq k \leq m$ , define

$$\theta_\xi(p) = \frac{1}{h(p)} \int_{U_p} h \xi \in e_p^\eta,$$

and note that this definition is independent of the choice of  $h$ , because if  $-\eta|_{U_p} = d(\ln \tilde{h}) = d(\ln h)$  then  $\tilde{h} = Ch$  for some  $C \in \mathbb{R}$ . When  $k = 0$  define  $\theta_\xi(p) = \xi(p)$ . This defines a linear map  $F : \Omega^k(M; \mathbb{R}) \rightarrow C^k(f; e^\eta)$  given by  $F(\xi) = \theta_\xi$ .

$F : (\Omega^*(M; \mathbb{R}), d_{-\eta}) \rightarrow (C^*(f; e^\eta), \delta_*)$  is a chain map

Pick any  $q \in Cr_{k+1}(f)$ , let  $-\eta|_{U_q} = d(\ln h)$  for some smooth positive function  $h$  on  $U_q = \overline{W^u(q)} \approx \Delta^{k+1}$ , and note that for any  $\xi \in \Omega^k(M; \mathbb{R})$  we have

$$d_{-\eta}\xi = d\xi + \frac{dh}{h} \wedge \xi = \frac{1}{h}d(h\xi)$$

on  $U_q$ . Moreover, once we fix orientations on the unstable manifolds the signs  $\epsilon(\nu) = \pm 1$  satisfy the relation

$$\partial \overline{W^u(q)} = \bigcup_{p \in Cr_k(f)} \bigcup_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \overline{W^u(p)}$$

as oriented manifolds.

$$\begin{aligned}
 (F \circ d_{-\eta}(\xi))(q) &= \frac{1}{h(q)} \int_{U_q} h d_{-\eta} \xi = \frac{1}{h(q)} \int_{U_q} d(h\xi) = \frac{1}{h(q)} \int_{\partial U_q} h \xi \\
 &= \frac{1}{h(q)} \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \int_{U_p} h \xi \\
 &= \frac{1}{h(q)} \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) h(p) \theta_\xi(p) \\
 &= \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) e^{\ln h(p) - \ln h(q)} \theta_\xi(p) \\
 &= \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \exp \left( \int_{\overline{\mathbb{R}}} (\gamma^\nu)^* (-d(\ln h)) \right) \theta_\xi(p) \\
 &= \sum_{p \in Cr_k(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \exp \left( \int_{\overline{\mathbb{R}}} (\gamma^\nu)^* (\eta) \right) \theta_\xi(p) \\
 &= (\delta_k^\eta \circ F(\xi))(q),
 \end{aligned}$$

where  $\gamma^\nu$  is any parameterization of  $\nu$  from  $p$  to  $q$ .

## References

- 1) D. M. Austin and P. J. Braam, *Morse-Bott theory and equivariant cohomology*, The Floer memorial volume, 1995, pp. 123–183. MR 1362827
- 2) Glen E. Bredon, *Topology and geometry*, Graduate Texts in Mathematics, vol. 139, Springer- Verlag, New York, 1993. MR1224675 (94d:55001)
- 3) Dan Burghelea, Leonid Friedlander, and Thomas Kappeler, *On the space of trajectories of a generic gradient like vector field*, An. Univ. Vest Timiș. Ser. Mat.-Inform. **48** (2010), no. 1-2, 45–126. MR2849328 (2012j:58020)
- 4) Dan Burghelea and Stefan Haller, *On the topology and analysis of a closed one form. I (Novikovs theory revisited)*, Essays on geometry and related topics, Vol. 1, 2, 2001, 133–175. MR 1929325 (2003h:58030)

## References

- 5) David E. Hurtubise, *The flow category of the action functional on  $\mathcal{L}G_{n,n+k}(\mathbb{C})$* , Illinois J. Math. **44** (2000), no. 1, 33–50. MR 1731380 (2001i:57047)
- 6) Peter Kronheimer and Tomasz Mrowka, *Monopoles and three-manifolds*, New Mathematical Monographs, 10, Cambridge University Press, Cambridge, 2007. MR2388043
- 7) Manuel de León, Belén López, Juan C. Marrero, and Edith Padrón, *On the computation of the Lichnerowicz-Jacobi cohomology*, J. Geom. Phys. **44** (2003), no. 4, 507–522. MR 1943175 (2003m:53145)
- 8) François Latour, *Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham*, Inst. Hautes Études Sci. Publ. Math. (1994), no. 80, 135–194 (1995). MR 1320607 (96f:57030)

## References

- 9) Norman Steenrod, *The Topology of Fibre Bundles*, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258 (12,522b)
- 10) Lizhen Qin, *On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds*, J. Topol. Anal. **2** (2010), no. 4, 469–526. MR 2748215 (2012d:58014)
- 11) Lizhen Qin, *An application of topological equivalence to Morse theory*, arXiv:1102.2838v1 (2011).
- 12) George W. Whitehead, *Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York, 1978. MR 80b:55001