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The Lichnerowicz cochain complex

A closed 1-form η ∈ Ω1
cl(M;R) on a finite dimensional smooth

manifold M can be used to twist the differential of the de Rham
cochain complex as follows. For any p-form ξ ∈ Ωp(M;R) define

dηξ = dξ + η ∧ ξ.

It is easy to verify that dη ◦ dη = 0, and hence dη defines a cochain
complex

Ω0(M;R)
dη // Ω1(M;R)

dη // Ω2(M;R)
dη // · · ·

called the Lichnerowicz cochain complex. The homology of this
complex is called the Lichnerowicz cohomology H∗η (M).
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Since η ∈ H1(M;R) is closed, for every ξ ∈ H∗(M;R) we have

dη(dη(ξ)) = dη(dξ + η ∧ ξ)

= d(dξ + η ∧ ξ) + η ∧ (dξ + η ∧ ξ)

= dη ∧ ξ − η ∧ dξ + η ∧ dξ

= 0.

If η = dh is exact, then

e−hd(ehξ) = e−h(ehdh ∧ ξ + ehdξ)

= dh ∧ ξ + dξ

= dξ + η ∧ ξ = dηξ,

which shows that dη is a generalization of the Witten deformation
to closed 1-forms.
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Locally conformal symplectic manifolds

Definition

A locally conformal symplectic (LCS) form Ω on a finite
dimensional smooth manifold M is a smooth nondegenerate 2-form
such that there exists an open cover U = {Ui}i∈I of M and
smooth positive functions λi > 0 on each Ui such that λiΩ|Ui

is a
symplectic form on Ui , i.e. λiΩ|Ui

is closed.

Proposition

If (M,Ω) is an LCS manifold, then the forms {d(lnλi )}i∈I fit
together to give a smooth closed 1-form η such that dΩ = −η ∧Ω,
and η is uniquely determined by the nondegenerate 2-form Ω.
Conversely, if Ω is a nondegenerate 2-form on a smooth manifold
M such that dΩ = −η ∧ Ω for some closed 1-form η, then Ω is
LCS.
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Conformally equivalent LCS manifolds

Definition

The smooth closed 1-form η such that dΩ = −η ∧ Ω is called the
Lee form associated to the LCS 2-form Ω.
Two LCS forms Ω and Ω′ on M are said to be conformally
equivalent if and only if there exists a smooth positive function
h > 0 such that Ω′ = hΩ.

Proposition

If Ω is an LCS form on a finite dimensional smooth manifold M
with associated Lee form η and Ω′ = hΩ for some smooth positive
function h > 0, then the Lee form associated to Ω′ is η − d(ln h).
Thus, the de Rham cohomology class of the Lee form
[η] ∈ H∗dR(M;R) is an invariant of the conformal class of Ω.
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Invariance of Lichnerowicz cohomology

Theorem

For any finite dimensional smooth manifold M, the Lichnerowicz
cohomology groups H∗η (M) depend only on the cohomology class
[η] ∈ H∗dR(M;R). In particular, if η is exact then the Lichnerowicz
cohomology groups are isomorphic to the de Rham cohomology
groups, i.e. Hk

η (M) ≈ Hk
dR(M;R) for all k = 0, . . . ,m.

This is a generalization of Proposition 4.4 in [Manuel de León,
Belén López, Juan C. Marrero, and Edith Padrón, On the
computation of the Lichnerowicz-Jacobi cohomology, J. Geom.
Phys. 44 (2003), no. 4, 507–522; MR 1943175].
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Proof of invariance for Lichnerowicz cohomology

Every smooth exact 1-form df can be written as dh/h for some
smooth positive function h > 0 by setting h = ef . So, if η and η′

are closed 1-forms on M with [η] = [η′] ∈ H1
dR(M;R), then there

exists a smooth positive function h : M → R such that
η′ = η + dh/h. Define isomorphisms φ, ψ : Ωk(M;R)→ Ωk(M;R)
by φ(ξ) = ξ/h and ψ(ξ) = hξ for all k = 0, . . . ,m.

dη′(φ(ξ)) = d

(
1

h
ξ

)
+

(
η +

dh

h

)
∧ 1

h
ξ

= − 1

h2
dh ∧ ξ +

1

h
dξ + η ∧ 1

h
ξ +

1

h2
dh ∧ ξ

=
1

h
(dξ + η ∧ ξ)

= φ(dηξ).
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Proof continued

Similarly,

dη(ψ(ξ)) = d(hξ) + η ∧ hξ

= dh ∧ ξ + hdξ + η ∧ hξ

= h

(
dξ + η ∧ ξ +

dh

h
∧ ξ
)

= ψ(dη′ξ).

Thus, φ : (Ω∗(M;R), dη)→ (Ω∗(M;R), dη′) and
ψ : (Ω∗(M;R), dη′)→ (Ω∗(M;R), dη) are chain equivalences and

φ∗ : Hk(Ω∗(M;R), dη)→ Hk(Ω∗(M;R), dη′)

is an isomorphism for all k = 0, . . . ,m with inverse ψ∗.

2
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Morse-Smale functions

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, α). Let
Cr(f ) = {p ∈ M| dfp = 0} denote the set of critical points of f ,
and for any p ∈ Cr(f ) let λp denote the index of p. For
p, q ∈ Cr(f ) let W u(q) ⊂ M be the unstable manifold of q,
W s(p) ⊂ M the stable manifold of p, and define

W (q, p) = W u(q) t W s(p) ⊂ M.

If this space is nonempty, then one says that q is succeeded by p,
i.e. q � p. In this case, W (q, p) is a noncompact smooth manifold
of dimension λq − λp by the Morse-Smale transversality condition.
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Oriented moduli spaces of gradient flow lines

Choosing orientations for all the unstable manifolds W u(q)
determines an orientation on W (q, p) for all p, q ∈ Cr(f ) via

T∗W (q, p) �
� // T∗W

u(q)|W (q,p)
// // ν∗(W (q, p),W u(q))|W (q,p),

where the fibers of the normal bundle are canonically isomorphic to
TpW

u(p) via the gradient flow.

The λq − λp − 1 manifold M(q, p) = W (q, p)/R is then oriented
by choosing any regular value y between f (p) and f (q), identifying
M(q, p) = W (q, p) ∩ f −1(y), and for any x ∈W (q, p) ∩ f −1(y)
declaring Bx to be a positive basis for TxM(q, p) if and only if
(−(∇f )(x),Bx) is a positive basis for TxW (q, p).
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Compactified moduli spaces as manifolds with corners

The moduli space M(q, p) has a compactification M(q, p)
consisting of the piecewise gradient flow lines from q to p, which
can be given the structure of a smooth manifold with corners [D.
Burghelea, L. Friedlander, S. Haller, T. Kappeler, F. Latour, L.
Qin].

We orient the (codimension) 1-stratum using the convention that
an outward pointing normal vector field followed by a positive basis
for a tangent space of ∂1M(q, p) should be a positive basis for a
tangent space of M(q, p).
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Path components of unparameterized gradient flow lines

A piecewise gradient flow line from q to p can be identified with
its image in M, which is an element of Pc(M), the space of all
nonempty closed subsets of M with the Hausdorff topology. This
identification is compatible with the topology of the smooth
manifold with corners M(q, p) in the sense that the map that
sends an element of ν ∈M(q, p) to its image Im(ν) is a
homeomorphism onto its image Im(M(q, p)) in Pc(M).
Write [(ν1, . . . , νl)] = [ν] to indicate that the image of the
piecewise gradient flow line (ν1, . . . , νl)

Im(ν1, . . . , νl) = Im(γ1, . . . , γl) =
l⋃

j=1

γj(R) ∈ Pc(M)

is in the same path component as Im(ν) in Im(M(q, p)) ⊂ Pc(M).
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Lemma (Orientations for relative index 2 moduli spaces)

Let r , p ∈ Cr(f ). If ν ∈M(r , p), then the closure of M(r , p; [ν])
in M(r , p) consists of the piecewise gradient flow lines from r to p
that are in the same path component as ν. Moreover, when
λr − λp = 2 we have

∂M(r , p; [ν]) = (−1)
⋃

r�q�p

[ν]=[(ν1,ν2)]

M(r , q; [ν1])×M(q, p; [ν2])

as oriented manifolds. Thus when λr − λp = 2,∑
r�q�p

∑
[ν]=[(ν1,ν2)]

(ν1,ν2)∈M(r ,q)×M(q,p)

ε(ν1)ε(ν2) = 0

where ε(νj) = ±1 is the sign of νj for j = 1, 2.

David Hurtubise Lichnerowicz cohomology and twisted Morse cohomology



Lichnerowicz cohomology
Moduli spaces of gradient flow lines

η-twisted Morse cohomology
The equivalence

Spaces of gradient flow lines
Compactified moduli spaces
η-twisted Morse homology
Invariance of η-twisted Morse homology

Definition (η-twisted Morse-Smale-Witten chain complex)

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, α), fix
orientations on the unstable manifolds of (f , α), and let
η ∈ Ω1

cl(M,R). The η-twisted Morse-Smale-Witten chain
complex is defined to be the chain complex with chain groups
Ck(f )⊗ R, where Ck(f ) is the free abelian group generated by the
critical points q of index k , and the homomorphism
∂ηk : Ck(f )⊗ R→ Ck−1(f )⊗ R is defined on a critical point by

∂ηk (q) =
∑

p∈Crk−1(f )

∑
ν∈M(q,p)

ε(ν) exp

(∫
R
γ∗ν(η)

)
p,

where γν : R→ M is any gradient flow line from q to p
parameterizing ν ∈M(q, p) and ε(ν) = ±1.
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Lemma

The pair (C∗(f )⊗ R, ∂η∗ ) is a chain complex, i.e. (∂η∗ )2 = 0.

Proof: Let r ∈ Cr(f ) with λr = k + 1 for some k = 1, . . . ,m − 1,
where m = dim M. We have ∂ηk (∂ηk+1(r))

= ∂ηk

 ∑
q∈Crk (f )

∑
ν1∈M(r,q)

exp

(∫
R
γ∗ν1

(η)

)
ε(ν1)q


=

∑
q∈Crk (f )

∑
ν1∈M(r,q)

exp

(∫
R
γ∗ν1

(η)

)
ε(ν1)∂

η
k (q)

=
∑

q∈Crk (f )

∑
ν1∈M(r,q)

exp

(∫
R
γ∗ν1

(η)

)
ε(ν1)

∑
p∈Crk−1(f )

∑
ν2∈M(q,p)

exp

(∫
R
γ∗ν2

(η)

)
ε(ν2)p

=
∑

p∈Crk−1(f )

∑
q∈Crk (f )

∑
ν1∈M(r,q)

∑
ν2∈M(q,p)

exp

(∫
R
γ∗ν1

(η) +

∫
R
γ∗ν2

(η)

)
ε(ν1)ε(ν2)p.
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Proof continued

Now fix p ∈ Crk−1(f ) and consider the coefficient in front of p.

coef(p) =
∑

q∈Crk (f )

∑
ν1∈M(r,q)

∑
ν2∈M(q,p)

exp

(∫
R
γ∗ν1

(η) +

∫
R
γ∗ν2

(η)

)
ε(ν1)ε(ν2)

=
∑

q∈Crk (f )

∑
(ν1,ν2)∈M(r,q)×M(q,p)

exp

(∫
R
γ∗(ν1,ν2)(η)

)
ε(ν1)ε(ν2)

where γ(ν1,ν2) : R→ M is any piecewise smooth curve
parameterizing the broken gradient flow line (ν1, ν2) from r to p.
We now group the terms in the above sum according to the various
path components [ν] of M(r , p) and use the fact that the integral
is constant on each such path component.
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Proof continued

This gives terms of the form

exp

(∫
R
γ∗(η)

) ∑
q∈Crk (f )

∑
[ν]=[(ν1,ν2)]

(ν1,ν2)∈M(r,q)×M(q,p)

ε(ν1)ε(ν2)

where γ : R→ M is any piecewise smooth curve parameterizing an
element of M(r , p; [ν]) from r to p. These terms are zero by the
lemma on the boundary of moduli spaces of gradient flow lines
between critical points of relative index 2.

2
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Invariance of η-twisted Morse homology

Theorem (Banyaga, H-, Spaeth)

Let η ∈ Ω1
cl(M,R) be a closed one form on a Riemannian manifold

(M, α). Then the homology of the η-twisted Morse-Smale-Witten
chain complex (C∗(f )⊗ R, ∂η∗ ) is independent of the Morse-Smale
pair (f , α) and depends only on the de Rham cohomology class of
η.

Corollary

Let (M,Ω) be a closed, smooth, finite dimensional LCS manifold
with Lee form η ∈ Ω1

cl(M;R). Then the η-twisted Morse homology
groups H∗((C∗(f )⊗ R, ∂η∗ )) are an invariant of the conformal class
of Ω.
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The height function f : S1 → R
The height function on S1 ⊂ R2 has a critical point q of index 1
and a critical point p of index 0. Orient the unstable manifold of q
clockwise and the unstable manifold of p as +1.

q

p

f

y

+1¡1

S 1

°
r

°
l
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The height function f : S1 → R

For a closed 1-form η on S1 the associated η-twisted
Morse-Smale-Witten boundary operator is given by

∂η1 (q) =

(
exp

(∫ 0

1
(γr )∗(η)

)
− exp

(∫ 0

1
(γ l)∗(η)

))
p.

If η = dh is exact, then the integral of η along any path from q to
p is h(q)− h(p). Hence,

∂η1 (q) =
(
eh(q)−h(p) − eh(q)−h(p)

)
p = 0,

and H∗((C∗(f )⊗ R), ∂η∗ )) = H∗(S
1;R).
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If η is not exact, then
∫ 0

1 (γr )∗(η) is not equal to
∫ 0

1 (γ l)∗(η). In
this case ∂η1 (q) 6= 0, and Hk((C∗(f ;R), ∂η∗ )) = 0 for all k .
Explicitly, consider the form,

dθ =
1

x2 + y2
(−ydx + xdy)

and the parameterization of S1 given by γ(t) = (cos t, sin t). Then
we have ∫ 0

1
(γr )∗(dθ) =

∫ −π/2

π/2
sin2 t + cos2 t dt = −π

and ∫ 0

1
(γ l)∗(dθ) =

∫ 3π/2

π/2
sin2 t + cos2 t dt = π.

Thus, ∂η1 (q) = (e−π − eπ)p 6= 0, and Hk((C∗(f )⊗ R, ∂η∗ )) ≈ 0 for
all k .
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η-twisted Morse-Smale-Witten cochain complex

Definition (Bundles of abelian groups)

A bundle of abelian groups G over a topological space X
associates to every point x ∈ X an abelian group Gx and to every
continuous path γ : [0, 1]→ X a homomorphism
γ∗ : Gγ(1) → Gγ(0) such that the following conditions are satisfied.

1 If two paths γ1, γ2 : [0, 1]→ X from x ∈ X to y ∈ X are
homotopic rel endpoints, then the homomorphisms from Gy to
Gx associated to γ1 and γ2 are the same, i.e. (γ1)∗ = (γ2)∗.

2 If γ : [0, 1]→ X is constant, then γ∗ is the identity.

3 If γ1, γ2 : [0, 1]→ X are paths with γ1(1) = γ2(0), then
(γ1γ2)∗ = (γ1)∗ ◦ (γ2)∗, where γ1γ2 denotes the
concatenation of γ1 and γ2.

Note: If G is any abelian group and γ∗ is the identity map for all
paths γ : [0, 1]→ X , then associating G = Gx to every point
x ∈ X determines a constant bundle of abelian groups.
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η-twisted Morse-Smale-Witten cochain complex

Definition (Isomorphic bundles)

Suppose that G1 and G2 are both bundles of abelian groups over a
topological space X . If there exists a family of isomorphisms
Φ : G1 → G2 such that for every continuous path γ : [0, 1]→ X
the diagram

(G1)γ(1)
γ
G1
∗ //

Φγ(1)

��

(G1)γ(0)

Φγ(0)

��
(G2)γ(1)

γ
G2
∗ // (G2)γ(0)

commutes, then G1 and G2 are said to be isomorphic.

Note: A bundle of abelian groups that is isomorphic to a constant
bundle is called simple. A bundle of abelian groups G is simple if
and only if for any x , y ∈ X the homomorphism γ∗ is independent
of the path γ from x to y .
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The local coefficient system eη

Definition

Let η ∈ Ω1
cl(M,R) be a closed smooth real valued 1-form on a

closed finite dimensional smooth manifold M. To each point x ∈ M
associate the additive abelian group R, and to each smooth path
γ : [0, 1]→ M associate the homomorphism γ∗ : Rγ(1) → Rγ(0)

γ∗(s) = e
∫ 0

1 γ
∗(η) · s for all s ∈ R.

Since every continuous path in M is homotopic rel endpoints to a
smooth path, Stokes’ Theorem shows that this defines a bundle of
(additive) R groups eη over M, also known as a flat line bundle.

Note: The above definition of γ∗ extends to paths γ : R→ M
using any diffeomorphism R ≈ [0, 1].
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[η1] = [η2] implies eη1 ≈ eη2

Claim

If η1, η2 ∈ Ω1
cl(M,R) are in the same de Rham cohomology class,

then eη1 is isomorphic to eη2 .

Proof: By assumption there exists a smooth function h : M → R
with η1 − η2 = dh. Define a family of isomorphisms Φ : eη1 → eη2

by Φx(s) = e−h(x) · s for all x ∈ M and s ∈ R. Then the following
diagram commutes for any path γ : [0, 1]→ R

R ×e
∫ 0

1 γ
∗(η1)

//

×e−h(γ(1))

��

R

×e−h(γ(0))

��
R ×e

∫ 0
1 γ
∗(η2)

// R

because e
∫ 0

1 γ
∗(η1) = e

∫ 0
1 γ
∗(η2+dh) = e

∫ 0
1 γ
∗(η2)eh(γ(0))−h(γ(1)). 2
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η-twisted Morse-Smale-Witten cochain complex

Definition (Twisted Morse-Smale-Witten cochains)

Let f : M → R be a smooth Morse-Smale function on a closed
smooth Riemannian manifold (M, α) of dimension m <∞. Fix
orientations on the unstable manifolds of (f , α), and let G be a
bundle of abelian groups over M. For any k = 0, . . . ,m, a
Morse-Smale-Witten k-cochain with coefficients in G is
defined to be a function θ that assigns to each critical point
p ∈ Crk(f ) an element θ(p) ∈ Gp. The kth Morse-Smale-Witten
cochain group is the collection of k-cochains, where the group
operation is pointwise application of the group operation in Gp.
Hence,

C k(f ;G ) ≈
⊕

p∈Crk (f )

Gp.
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η-twisted Morse-Smale-Witten cochain complex

Definition (η-twisted Morse-Smale-Witten cochain complex)

The η-twisted Morse-Smale-Witten cochain complex is the
chain complex (C ∗(f ; eη), δη∗), where δηk : C k(f ; eη)→ C k+1(f ; eη)
is defined on a k-cochain θ ∈ C k(f ; eη) by

(δηkθ)(q) =
∑

p∈Crk (f )

∑
ν∈M(q,p)

ε(ν) exp

(∫
R

(γν)∗(η)

)
θ(p) ∈ eηq ,

for any critical point q ∈ Crk+1(f ), where γν : R→ M is any
continuous path from p to q whose image coincides with the image
of ν ∈M(q, p) and ε(ν) = ±1 is the sign determined by the
orientation on M(q, p).

The proof that δηk+1 ◦ δ
η
k = 0 is similar that of ∂ηk ◦ ∂

η
k+1 = 0.
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The η-Twisted Morse-Smale-Witten de Rham Theorem

Theorem (Banyaga, H-, Spaeth)

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, α). Fix
orientations on the unstable manifolds of (f , α) and assume that
the unstable manifolds determine a regular CW-structure on M.
For any η ∈ Ω1

cl(M,R), the η-twisted Morse cohomology groups
are isomorphic to the Lichnerowicz cohomology groups defined by
−η, i.e.

Hk((C ∗(f ; eη), δη∗)) ≈ Hk
−η(M)

for all k = 0, . . . ,m.
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Regular CW-complexes

Definition

A CW-complex X is regular if every closed k-cell ek , with k > 0,
is homeomorphic to ∆k .

Regular CW-complexes satisfy several properties which are not
necessarily satisfied by nonregular CW-complexes. For instance,

1 If j < k and e j and ek are cells such that e j ∩ ėk 6= ∅, then
e j ⊂ ėk .

2 If ek and ek+2 are cells such that ek is a face of ek+2, then
there are exactly two (k + 1)-cells ek+1 such that ek is a
proper face of ek+1 and ek+1 is a proper face of ek+2, i.e.
ek < ek+1 < ek+2.

3 The incidence number [ek : ek−1] is ±1 if ek−1 < ek and zero
otherwise.
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A regular CW-structure on S1
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Theorem (Banyaga, H-, Spaeth)

On any closed finite dimensional smooth manifold M there exists a
smooth Morse-Smale pair (f , α) such that the unstable manifolds
of (f , α) determine a regular CW-structure on M. Moreover, the
Riemannian metric α can be chosen so that there are Morse charts
of f around every critical point that are isometries with respect to
the standard Euclidean metric on Rm.

Proof outline: Pick a triangulation of M fine enough so that every
m-simplex is contained in a coordinate chart. Construct a
Morse-Smale function with one critical point of index k , for every
k-simplex for all k = 0, . . . ,m, whose unstable manifolds mimic
the triangulation.
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Unstable manifolds giving a regular CW-structure on RP2
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Mapping k-forms to Morse-Smale-Witten k-cochains

Fix any η ∈ Ω1
cl(M,R) and note that for any p ∈ Cr(f ) the set

Up
def
= W u(p) is simply connected since the unstable manifolds of

(f , α) determine a regular CW-structure on M. So, −η|Up is exact
and −η|Up = dh/h for some smooth positive function h : Up → R,
if k = 1, . . . ,m. For any ξ ∈ Ωk(M;R), where 1 ≤ k ≤ m, define

θξ(p) =
1

h(p)

∫
Up

hξ ∈ eηp ,

and note that this definition is independent of the choice of h,
because if −η|Up = d(ln h̃) = d(ln h) then h̃ = Ch for some C ∈ R.
When k = 0 define θξ(p) = ξ(p). This defines a linear map
F : Ωk(M;R)→ C k(f ; eη) given by F (ξ) = θξ.

David Hurtubise Lichnerowicz cohomology and twisted Morse cohomology



Lichnerowicz cohomology
Moduli spaces of gradient flow lines

η-twisted Morse cohomology
The equivalence

The main theorem
Regular CW-complexes
An existence theorem
Proof of the main theorem (outline)

F : (Ω∗(M ;R), d−η)→ (C ∗(f ; eη), δη∗) is a chain map

Pick any q ∈ Crk+1(f ), let −η|Uq = d(ln h) for some smooth

positive function h on Uq = W u(q) ≈ ∆k+1, and note that for any
ξ ∈ Ωk(M;R) we have

d−ηξ = dξ +
dh

h
∧ ξ =

1

h
d(hξ)

on Uq. Moreover, once we fix orientations on the unstable
manifolds the signs ε(ν) = ±1 satisfy the relation

∂W u(q) =
⋃

p∈Crk (f )

⋃
ν∈M(q,p)

ε(ν)W u(p)

as oriented manifolds.
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(F ◦ d−η(ξ))(q) =
1

h(q)

∫
Uq

hd−ηξ =
1

h(q)

∫
Uq

d(hξ) =
1

h(q)

∫
∂Uq

hξ

=
1

h(q)

∑
p∈Crk (f )

∑
ν∈M(q,p)

ε(ν)

∫
Up

hξ

=
1

h(q)

∑
p∈Crk (f )

∑
ν∈M(q,p)

ε(ν)h(p)θξ(p)

=
∑

p∈Crk (f )

∑
ν∈M(q,p)

ε(ν)e ln h(p)−ln h(q)θξ(p)

=
∑

p∈Crk (f )

∑
ν∈M(q,p)

ε(ν) exp

(∫
R
(γν)∗(−d(ln h))

)
θξ(p)

=
∑

p∈Crk (f )

∑
ν∈M(q,p)

ε(ν) exp

(∫
R
(γν)∗(η)

)
θξ(p)

= (δηk ◦ F (ξ))(q),

where γν is any parameterization of ν from p to q.
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