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Why would we study local coefficients?

“Local coefficients bring an extra level of complication that one
tries to avoid whenever possible.”

— Hatcher, Algebraic Topology, Section 3.H.

“For example, the only way to extend Poincaré duality with Z
coefficients to nonorientable manifolds is to use local coefficients.”

— Hatcher, Algebraic Topology, Section 3.H.
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Floer homology and symplectic cohomology

Kronheimer and Mrowka use Floer homology of the Seiberg-Witten
monopole equation with local coefficients in their book
[Monopoles and Three-manifolds, New Mathematical
Monographs, vol. 10. Cambridge University Press, Cambridge
(2007)].

The proof of Viterbo's Theorem, which asserts that there is an
isomorphism between the twisted homology of the free loop space
of a closed differentiable manifold and the symplectic cohomology
of its cotangent bundle, given by Abouzaid uses homology with
local coefficients on spaces of piecewise geodesics [Symplectic
cohomology and Viterbo's theorem. Free Loop Spaces in
Geometry and Topology, pp. 271-485 (2015)].
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Singular and CW-Homology with Integer Coefficients
@ Singular homology with integer coefficients
@ Connecting homomorphisms
@ CW-homology with integer coefficients
@ The CW-Homology Theorem
© Morse Homology with Integer Coefficients
@ Morse functions
@ Morse-Smale transversality
@ Morse homology
@ Morse homology vs. CW-homology
© Homology with Local Coefficients
@ Local coefficients
@ Singular homology with local coefficients
@ CW-homology with local coefficients
@ Morse homology with local coefficients
0 Main Theorem and Applications
@ Main theorem
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Singular chains

For any k € Z,, the standard k-simplex A¥ is the subspace of
R**+1 consisting of (k -+ 1)-tuples (to, t1, ..., tx) with t; > 0 and
to+t1+ -+t = 1. A singular k-simplex in a topological space
X is a continuous map o : AK — X.

For k > 0, Cx(X;Z) is the free Z-module with generators the
singular k-simplices, i.e. an element

Z ajo; € Ck(X; Z)

iel
is a formal sum, where a; € Z, the o; are k-simplices, and a; is
non-zero for only a finite number of / € /.

If AC X is a subspace, the inclusion / : A — X induces a
homomorphism iy : Cx(A; Z) — Cx(X;Z), and

Cu(X, A 2) & C(X;2) ) C(A; 7).
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The CW-Ho orem

Singular homology with integer coefficients

There are face maps F,-k - Akl 5 AK defined by
Fl(to, ... tie1) = (to, .., tii1,0, 8, ..., te_1) C AK
for 0 < i < k, which determine a singular boundary operator
Ok : Cu(X;Z) — C—1(X; Z),
defined on a generator o € Cx(X;Z) by
h(o)=0coFf —aoFf+-- +(-1)koo Ff.

It descends to a boundary operator

Ok 1 Cu(X, A Z) — C1(X, A7)

that satisfies 0 05k+1 =0, and hence for all k > 0 we can define

Hi(X, A Z) © Zu(X, A 2) ) Bi(X, A Z) % kernel 3y /image D1
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Singular and CW-Homology with Integer Coefficients Singular homo iith integer coefficients
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The CW-Ho

Connecting homomorphisms

For any A C X there is a connecting homomorphism
Ok + He(X, A) — Hi—1(A)
for all k which fits into the following exact sequence.
s Hi(A) 25 Hi (X)) 25 H(X A) 25 He 1 (A) — - -

For a triple A C B C X the connecting homomorphism and the
inclusion j : (B,0) — (B, A) induce a connecting homomorphism

80 = ju 0 0 : Hi(X, B) 25 Hi_1(B) 2 He_1(B, A)
that fits into the following exact sequence.
- — Hi(B, A) = Hi(X, A) 255 Hi (X, B) 25 He_1(B, A) —»
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CW-complexes

A CW-complex is built step by step by successive operations called
attaching cells.

Let D" C R” be the unit n-disk and S"~! = 9D" the unit
(n — 1)-sphere. If fy : S"~! — X is a continuous map into a
topological space X, we denote by

X Us, D"

the quotient space of the disjoint union X LI D" where

x € OD" = S"1 is identified with f5(x) € X. We say that

X Ug, D" is obtained from X by attaching an n-cell and fj is
called the attaching map.
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Attaching a 2-cell
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CW-structures

Definition

A topological space X has a CW-structure if there are subspaces
X (") with
X0 cxWc...cx= U x(n)
neZ
such that
o X js a discrete set of points,
o X(t1) is obtained from X(") by attaching (n + 1)-cells for all
n>0,
@ X has the weak topology. This means that a subspace of X
is open if and only if its intersection with X (") is open in X (")
forall ne Z.
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CW-chains

Lemma

He (XM, x(=1). 7) ~ { OQ,,(X;Z) fork =n

otherwise.

where

C.(X:Z) =~ @ Ha(D, 0D} Z) =~ D Z

is the free Z-module generated by the n-cells of X. Moreover, the
map

P £« : P Ha(DF,0DF; Z) — Ha(X™, X ("~1); 7)

is an isomorphism.
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The CW-boundary operator

Define the CW-boundary operator
0y Cp(Xi2) = €, 1 (X Z)
to be the composition
Co(X:Z) Y8 Hy(X™, x(=Dy 35 g (x(0-1) x(n=2)) Post ¢ (x7)
where

W, C,(X;Z) = Hy(x(M, x(n=1)
®pq: Hooa (XD x(=2)y - Zy (X 7Z)
are given by the above lemma, and the map J, is the connecting
homomorphism of the triple (X (", X(n=1) x(n=2)),
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The CW-Homology Theorem

Theorem (CW-Homology Theorem)

If X is a CW-complex, then 9,,: C.(X;Z) — C,_1(X;Z) satisfies
0,100, =0 and is given by

dp(o) = Z[O’ T

where [0 : 7] is the degree of the map p; o fy, : OD! — S"~1.
Moreover, there is a natural identification of the homology of the
complex (C,(X;Z),0,) with the singular homology H.(X;Z).

In the above theorem, fy, : 0D — X("=1) is the attaching map of
the n-cell o, 7 is an (n — 1)-cell, and p; is the composition

X(n—l) N X(n—l)/X(n—Q) N Sn—l
i
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Morse Homology with Integer Coefficients Morse-Sma a
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Morse functions

@ The Hessian H,(f) of a smooth function f : M — R at a
critical point p € M is a symmetric bilinear map
Hp(f) : ToM x T,M — R whose matrix in local coordinates

o(x) = (x1,-..,%m) is given by
2(f o -1
(1) = (5o ).

@ The dimension of the subspace of T,M on which H,(f) is
negative definite is called the index of p, i.e. the number of
negative eigenvalues of M,(f), and is denote by Ap.

© The critical point p is said to be non-degenerate if and only
if the Hessian Hp(f) is non-degenerate.

@ A Morse function f : M — R on a smooth manifold M is a
smooth function whose critical points are all non-degenerate.
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Stable and unstable manifolds

Let p € M be a critical point of a smooth function f : M — R on
a smooth Riemannian manifold (M, g) of dimension m < oo, and
let ¢ : R x M — M be the 1-parameter family of diffeomorphisms
determined by —Vf. The stable manifold of p is

We(p) = {x & M| Jim pe(x) = p}
and the unstable manifold of p is
We(p) = {x € M| lim_@:(x) = p}.

The Stable/Unstable Manifold Theorem: If p is a
nondegenerate critical point, then the stable manifold W*(p) is a
smoothly embedded open disk of dimension m — A, and the
unstable manifold W*"(p) is a smoothly embedded open disk of
dimension .

David Hurtubise with Augustin Banyaga and Peter Spaeth Twisted Morse Complexes



Morse functions
Morse Homology with Integer Coefficients Morse-Smale sversality
Aorse homolo
e homolo CW-homology

Stable and unstable manifolds on T2
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Morse homology

Morse homology vs. CW-homology

Morse-Smale transversality

A pair (f,g) is called Morse-Smale if and only if all the stable and
unstable manifolds intersect transversally, i.e. W"Y(q) m W*(p) for
all p,q € Cr(f).

If W¥(q) N W=(p) # 0, then this condition implies that
WH(q) N W*(p) is a manifold of dimension Ay — A, and the
moduli space

M(q,p) = (W"(q) N W3(p)) /R
is a manifold of dimension \q — A\, — 1.

Note: The dimension of M does not affect the dimension of the
moduli space M(q, p).
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Morse functions
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e homolo CW-homology

A Morse-Smale function on T2 (tilted)
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The Morse-Smale-Witten chain complex

Let f : M — R be a Morse-Smale function on a compact smooth
Riemannian manifold (M, g) of dimension m < oo, and assume
that orientations for the unstable manifolds of f have been chosen.
Let Ck(f) be the free abelian group generated by the critical points
of index k, and let

C.(f) = P C(f).
k=0
Define a homomorphism 9y : Cx(f) — Ci_1(f) by
o(a) = >, nla.p)p
pGCrk_l(f)

where n(q, p) is the number of gradient flow lines from g to p
counted with sign. The pair (C.(f), 0) is called the
Morse-Smale-Witten chain complex of f.
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Oriented moduli spaces of gradient flow lines

Choosing orientations for all the unstable manifolds W*"(q)
determines an orientation on W(q, p) for all p, g € Cr(f) via

T W(q, p)— T.WY(q)lw(q,p) — v«(W(q, p), W"(a))lw(q,p),

where the fibers of the normal bundle are isomorphic to T,W"(p)
via the gradient flow.

The Aqg — Ap — 1 manifold M(q, p) = W(q, p)/R is then oriented
by choosing any regular value y between f(p) and f(q), identifying
M(q,p) = W(g,p) N f~*(y), and for any x € W(q,p) N f*(y)
declaring By to be a positive basis for T, M(q, p) if and only if
(—=(Vr)(x), Bx) is a positive basis for T, W(q, p).
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Morse homology vs. CW-homology

The Morse Homology Theorem

Theorem

Let f : M — R be a Morse function on a smooth manifold M.
Suppose that M* = {x € M| f(x) < t} is compact for all t € R.
Then M has the homotopy type of a CW-complex X with one cell
of dimension k for each critical point of index k.

So, we can use the CW-complex X ~ M and the CW-Homology
Theorem to compute the homology of M, even if (f,g) is not
Morse-Smale.

Theorem (Morse Homology Theorem)

If (f,g) is Morse-Smale, then the pair (C.(f),0s) is a chain
complex, and its homology is isomorphic to the singular homology
H.(M;Z).
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The height function on a tilted 2-torus

Co(f) —2~ () — 2~ Co(F) ——0

N

2 1
<s§>—"><qgr>—=<p>—->0
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Vorse functions
Morse Homology with Integer Coefficients Morse-Smale transversality
Morse homolo,
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The height function on a deformed 2-sphere

Go(f) ()~ Co(f) ——=0

ol

<rs>—><qg>—><p>—>0
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Unstable manifolds and CW-structures

Theorem (Qin, J. Fixed Point Theory Appl. (2021))

Let f : M — R be a Morse-Smale function on a closed, finite
dimensional, smooth, Riemannian manifold (M, g).

@ The unstable manifolds of f determine a CW-structure on M.

Q Ifq,p e Cr(f) with \y — \p =1, then

[WH(q) : WH(p)] = n(q, p)-

The proof relies on the smooth manifold with corners structure on
M(q, p) and topological equivalence.

Similar results were announced or proved earlier for special metrics:
Audin and Damian (2014),Burghelea and Haller (2001), Burghelea,
Friedlander, and Kappeler (2010), Laudenbach (1992), Qin (2010).
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Definition (Bundles of abelian groups)

A bundle of abelian groups G over a topological space X
associates to every point x € X an abelian group Gy and to every
continuous path 7 : [0,1] — X a homomorphism
Y« © Gy(1) = G,(0) such that the following conditions are satisfied.
@ If two paths 71,72 : [0,1] — X from x € X to y € X are
homotopic rel endpoints, then the homomorphisms from G, to
Gy associated to 1 and 7 are the same, i.e. (1)« = (72)«-
@ If v:[0,1] — X is constant, then ~, is the identity.
@ If 41,72 : [0,1] — X are paths with ~1(1) = ~2(0), then

(7172)« = (71)« © (72)«, where v17y2 denotes the
concatenation of 1 and ~».

Alternately: A bundle of abelian groups G is a functor from the
fundamental groupoid of X to the category of abelian groups.
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Singular homology with local coefficients
CW-homology with local coefficients
Morse homology with local coefficients

Definition (Isomorphic bundles)

Suppose that G; and Gy are both bundles of abelian groups over a
topological space X. If there exists a family of isomorphisms
® : G — Gy such that for every continuous path v : [0,1] — X

the diagram
61

(G1)5(1) —= (G1)1(0)

50 l l“’w(O)
Gy

Ve
(G2)5(1) — (G2)+(0)
commutes, then G; and G, are said to be isomorphic.

Note: A bundle of abelian groups that is isomorphic to a
constant bundle (v, = id for all v) is called simple. A bundle of
abelian groups G is simple if and only if for any x,y € X the
homomorphism -, is independent of the path v from x to y.
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The n-twisted Iocal coefﬁaent system

Example (The local coefficient system e” )

Let n € QL (M,R) be a closed smooth real valued 1-form on a
finite dimensional smooth manifold M. To each point x € M
associate the additive abelian group R, and to each smooth path
7 :[0,1] = M associate the homomorphism 7, : R 1y — R
defined by
0«
Y(s) = et 7 s forall s € R.

This defines a bundle of (additive) R groups over M, since every
continuous path is homotopic rel endpoints to a smooth path.

Lemma

Ifni,m € QL(M,R) are in the same de Rham cohomology class,
then e is isomorphic to e"?.
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Morse homology with local coefficients

Singular chains with coefficients in G

Let A¥ denote the standard k-simplex with vertices ey, ..., e, and
let Cx(X; G) be the set of all functions ¢ such that

© For every singular k-simplex v : AK — X, c(u) € Gu(ep) IS
defined.

@ The set of singular simplices u such that c(u) # 0 is finite.

Elements of the abelian group Ci(X; G) are called singular
k-chains with coefficients in G, and every ¢ € C,(X; G) can be
represented as a finite sum

n

c= Zc(u,-) - U

i=1

where uq, ..., u, are the singular simplices such that c(u;) # 0 and
c(ui) € Gyey) forall i=1,...,n.
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Singular homology with coefficients in G

Definition

The singular boundary operator with coefficients in G is
defined to be the homomorphism 9y : Cx(X; G) — Cx—_1(X; G)
given on an elementary chain g - u by

k
Oilg - u) = (u)s(g) -uo Fo+ 3 (~1)g-uoF;

i=1

where (7u)« © Gy(ey) = Gu(e) is the homomorphism associated to
the path 7,(t) = u((1 — t)e; + t ey) from u(e;) to u(ey) and

F; : Ak=1 < Ak is the inclusion onto the face opposite e; for all
i=0,...,k—1. The pair (C.(X; G), ) is a chain complex, and
its homology groups H,(X; G) are called the singular homology
groups of X with coefficients in the bundle G.
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Eilenberg's Theorem and equivariant homology

Suppose that (X, xp) is a connected topological space and Gy is an
abelian group on which 71(X, xp) acts. There is a chain complex
(Go ®x, Cu(X),0:), where the tensor product is taken over

m1(X, x0) and the boundary operator 0, is induced from the
boundary operator on the singular chains in X. The homology

groups of this complex are the equivariant homology groups
E.(X; Go).

Theorem (Eilenberg)

If G is a bundle of abelian groups in the isomorphism class
determined by the action of T1(X,xo) on Go, then Hi(X; G) is
isomorphic to Ex(X; Go) for all k.
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Morse homology with local coefficients

Local coefficients on a CW-complex

If G is a local coefficient system on a CW-complex X, the triple
(X(k=2) x(k=1) X(K)) determines a connecting homomorphism
Hi (X5 x(k=1). G) s H_ (XK1 G)
that can be composed with the map
Hi_1(X%D: G) 55 H_y (XD, x(k-2). 6)

induced from the inclusion j : X(k=2) — X(k=1) 5 give a map

Ho(X®) x k=D Gy “% g (x k-1, x(k=2). G).

The above map satisfies Jx_1 0 9 = 0, and the homology groups
of the chain complex with boundary operator dy and kt™-chain
group Hk(X(k), X(k=1). G) are isomorphic to the singular homology
groups of X with coefficients in the bundle G.
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Regular CW-complexes

A CW-complex X is regular if every closed k-cell X, with k > 0,
is homeomorphic to AX.

Regular CW-complexes satisfy several properties which are not
necessarily satisfied by nonregular CW-complexes. For instance,

@ If j < k and & and e* are cells such that e/ N &k # (), then
e C ék.

Q If X and X2 are cells such that e is a face of ek*2, then
there are exactly two (k + 1)-cells e¥*1 such that e is a
proper face of e¥*1 and ek*1 is a proper face of ek*2 i.e.
ek < ektl <« ekt2,

© The incidence number [eX : ¥~ is +1 if e¥~1 < e¥ and zero
otherwise.
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Local coefficient:

Homology with Local Coefficients
Morse homol th local coefficients

For each k-cell ef,‘ in a regular CW-complex X choose a basepoint
x(ek). This determines an isomorphism

D5, : P Hi(B*, A% Gyery) = H(XW), X5 6).

The definition of the induced map (f5). requires both a map of
spaces f, : (Ak AK) — (X), X(k=1) and a homomorphism

Vi : Gy(ek) — f (G). We take the homomorphism 7, to be the one
defined by restrlctlng the local coefficient system G to the simply
connected space e. (This works because X is regular.) That is,
for any point x € Ak there is a unique homotopy class of paths rel
endpoints from f,(x) to x(eX) and hence a well-defined
homomorphism G, (k) — G, (x)-

Define

def k
CWi(X; G) = g ge,;
g
David Hurtubise with Augustin Banyaga and Peter Spaeth Twisted Morse Complexes
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Steenrod’s CW-boundary operator

Steenrod’s cellular boundary operator with coefficients in G
on a regular CW-complex X is defined to be the homomorphism

8k . CWk(X; G) — CWk_l(X; G)

given on an elementary chain ge¥ by
O(ge) = D [e": e M (rerren)e(g)e T,
ek71<ek

where (Yek-1¢k)x  Gyeky = Gy(ek—1y denotes the isomorphism
determined by any path from x(e*~1) to x(ek) contained in the
closure of ek. We will call the pair (CW.(X; G),0,) Steenrod’s
CW-chain complex with coefficients in the bundle G.
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The Twisted CW- Homology Theorem

Theorem (Twisted CW-Homology Theorem)

If X is a regular CW-complex and G is a bundle of abelian groups
over X, then the singular boundary operator with coefficients in G
induces Steenrod'’s cellular boundary operator with coefficients in
G. That is, the following diagram commutes.

Ok

CWi(X; G) CWi_1(X; G)

|, 1

H (X0 x(k=1), G)—>Hk 1 (X1 x(k=2). G)

Thus, the homology of Steenrod’s CW-chain complex
(CWL(X; G), 04) is isomorphic to the singular homology of X with
coefficients in the bundle G.
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The twisted Morse-Smale-Witten chain complex

Let G be a bundle of abelian groups and (f,g) a Morse-Smale pair
on a finite dimensional closed smooth manifold M. Fix orientations
on the unstable manifolds, and for all k =0,..., m define

G(fi6)E{ Y gqgcGp~ P 6

qECrk(f) qECrk(f)

and 98 : Ci(F; G) = Cr_y(f: G) by

of(ga) = > > wnilep

pECry_1(f) veM(q, P)

where 77 : [0,1] — M is any continuous path from p to g whose
image coincides with the image of v € M(q, p) and ¢(v) = £1is
the sign determined by the orientation on M(q, p).
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Morse homology with local coefficients

The n-twisted Morse-Smale-Witten chain complex

Let n € QL(M,R) be a closed 1-form and (f,g) a Morse-Smale
pair on a finite dimensional closed smooth manifold M. We have

Ci(f;e") =~ C(f) @R,

where Cy(f) is the free abelian group generated by the critical
points g of index k. Fixing orientations on the unstable manifolds
of (f,g), the homomorphism 9} : Ci(f) @ R — Ce_1(f) ® R is
given on a critical point g € Cry(f) by

) = XX aee( [im)e

peCri_1(f) veM(q,p)

where v, : R — M is any gradient flow line from g to p
parameterizing v € M(q, p) and €(v) = %1 is the sign determined
by the orientation on M(q, p).
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The constant bundle G = Z

If G =Z is constant and g € Z, then

0f(gq) = Y. D>, ewhile)p

pECrk_l(f) VEM(C],P)

= Y. D> dver

pECri_1(f) vEM(q,p)

= > gl > «w|rp

pECri_1(f) veM(q,p)

= g > n(qpp

pECri_1(f)
= gok(q) = Ok(gq).
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The height function on a circle

Consider the height function f : S — R on the unit circle

St ¢ R? with a critical point g of index 1 and a critical point p of
index 0. Orient the unstable manifold of g clockwise and the
unstable manifold W"(p) = {p} with +1.

g1 q J
-1 +1
f
>
't o
p
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Homology with Local Coefficients CW-homolo; ocal coefficients
Morse hom with local coefficients

The (untwisted) Morse-Smale-Witten chain complex

The (untwisted) Morse-Smale-Witten chain complex of f is

0 Cu(F) —2 = Go(f) —=0

o

0—><g>—><p>—>0

with 01(q) = 0 zero since the two gradient flow lines have opposite
signs. So,

Zif k=0,1

Hi(Ci(f),0+) = 0 otherwise.

=
2
®
o
2
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Morse homology with local coefhments

The n-twisted Morse-Smale-Witten chain complex

Let ) be a closed 1-form on S! and e” its associated flat R-bundle.
The n-twisted Morse-Smale-Witten boundary operator is given by

0{(q) = (exp (/j(v’)"(n)) — exp </10(7’)*(77)>> p.

If 1 is exact, then H.((C.(f;e"),07)) = H.(S*; R). However, if

is not exact, then
0 0
ry* 1\ *
[ ez [,

and Hy((C.(f; e"),d)) =~ 0 for all k.
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The Twisted Morse Homology Theorem

Theorem (Twisted Morse Homology Theorem)

Let f : M — R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, g), and let G
be a bundle of abelian groups over M. The homology of the
Morse-Smale-Witten chain complex with coefficients in G is
isomorphic to the singular homology of M with coefficients in G.
That is,

Hi((C(f: G),07)) = Hi(M; G)

forall k=0,...,m.

Proved by comparing with Steenrod'’s twisted CW-complex for
regular CW-complexes.
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Proof outline (invariance)

Theorem (Invariance Theorem)

Let (M, g) be a closed finite dimensional smooth Riemannian
manifold, and let G be a bundle of abelian groups over M. Then
the homology of the twisted Morse-Smale-Witten chain complex
(C.(f; G),09) is independent of the Morse-Smale pair (f,g) and
depends only on the isomorphism class of the bundle of abelian
groups G.

Proved in Chapter 3 using standard continuation arguments from
Floer theory. The proof relies on the smooth manifolds with
corners structure on M(q, p).
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Proof outline (triangulations and unstable manifolds)

Theorem (Banyaga, H-, Spaeth)

On any closed finite dimensional smooth manifold M there exists a
smooth Morse-Smale pair (f,g) such that the unstable manifolds
coincide with a smooth triangulation of M. Hence, the unstable
manifolds of (f,g) determine a regular CW-structure on M.
Moreover, the Riemannian metric g can be chosen such that
around every critical point of f there is a Morse chart that is an
isometry respect to the standard Euclidean metric on R™.

Proved in Section 4.4. The fundamental identity

#M(q,p) = [e; : e "]
follows easily for the function constructed in the above theorem,
and hence the Morse-Smale-Witten boundary operator coincides

with Steenrod’'s CW-boundary operator.
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A minimal triangulation of RP? with ten 2-simplices

h
T
P1 s
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Lichnerowicz cohomology (Chapter 5)
For any k-form & € QX(M,R) define d,,¢ = dé +n A&, It is easy
to verify that d,, o d;, = 0, and hence d,, defines a cochain complex
d d d
Q°M,R) —> QY(M,R) —> Q*(M,R) —*> - - -

called the Lichnerowicz cochain complex.

Theorem (n-Twisted Morse de Rham Theorem)

Let f : M — R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M,g). For any
n € QL(M,R), the n-twisted Morse cohomology groups are
isomorphic to the Lichnerowicz cohomology groups defined by —n,
i.e.

Hk((C*(fv e’l), 52)) ~ Hﬁn(M)

forall k =0,..., m.
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Locally conformal symplectic manifolds

Theorem

Let (M, Q) be a closed, smooth, finite dimensional LCS manifold
with Lee form n € QL (M,R), i.e. dQ = —nASQ. Then the
n-twisted Morse homology groups H.((C.(f) ® R, d)) and the
n-twisted Morse cohomology groups H.((C*(f; e"),d!)) are
invariants of the conformal class of Q.

Proved in Chapter 5.
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Parallel 1-forms (Section 6.1)

Theorem (Parallel 1-Form Obstruction)

Let f : M — R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold M, and assume
there exists a nonzero closed 1-form 1 on M such that

Hi((C*(f; e"),8{)) # 0 for some k. Then for any nonzero closed
I-form ¢ on M such that [¢] = [n] € HY(M; R) the 1-form ¢ is not
parallel with respect to any Riemannian metric on M.

Proved in Section 6.1 using a result of Leén, Lépez, Marrero, and
Padrén (2003).
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H-spaces (Section 6.2)

An H-space is a topological space X together with a continuous
map m: X x X — X and an element e € X such that

m(e,-): X — X and m(-,e) : X — X are homotopic to the
identity through maps that preserve e.

Theorem (Associative H-space Obstruction)

Let (f,g) be a smooth Morse-Smale pair on a closed path con-
nected finite dimensional smooth manifold M. If there exists a local
coefficient system L of rank one vector spaces on M such that

© L is not simple, i.e. L is not isomorphic to a constant bundle,
and

Q@ Hy((C.(f; L),0%)) # 0 for some k,
then M is not an associative H-space.

Proved using a result of Albers, Frauenfelder, and Oancea (2017).
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Novikov homology (Section 6.3)

S.P. Novikov noted that a closed 1-form ( on a differentiable
manifold M defines a “multivalued function” S by integrating ¢
over paths, and S becomes single valued on an appropriate
covering space M — M.

Problem. To construct an analogue of Morse theory for the
multivalued functions S. That is, to find a relationship between
the stationary points dS = 0 of different index and the topology of
the manifold M.
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Approaches using the dynamics of a flow

The generalization of the Morse-Smale-Witten chain complex to
closed 1-forms that determine integral cohomology classes, i.e. to
circle valued Morse functions, was carried out by A. Pajitnov
(1995), and the construction of a Morse-Smale-Witten type
complex using an arbitrary closed 1-form was given by D.
Burghelea and S. Haller (2001) and F. Latour (2011).

These generalizations all define the boundary operator for the
“Novikov complex” using the dynamics of a flow on a covering of
the manifold determined by the closed 1-form and a Riemannian
metric. The homology of the Novikov complex is isomorphic to the
singular homology of the manifold with local coefficients in a
system of rank one Nov(I')-modules.

In Section 6.3 we use twisted Morse complexes to compute the
Novikov numbers of S, T2, K2, and a surface of genus two.
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