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Why would we study local coefficients?

“Local coefficients bring an extra level of complication that one
tries to avoid whenever possible.”

– Hatcher, Algebraic Topology, Section 3.H.

“For example, the only way to extend Poincaré duality with Z
coefficients to nonorientable manifolds is to use local coefficients.”

– Hatcher, Algebraic Topology, Section 3.H.
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Floer homology and symplectic cohomology

Kronheimer and Mrowka use Floer homology of the Seiberg-Witten
monopole equation with local coefficients in their book
[Monopoles and Three-manifolds, New Mathematical
Monographs, vol. 10. Cambridge University Press, Cambridge
(2007)].

The proof of Viterbo’s Theorem, which asserts that there is an
isomorphism between the twisted homology of the free loop space
of a closed differentiable manifold and the symplectic cohomology
of its cotangent bundle, given by Abouzaid uses homology with
local coefficients on spaces of piecewise geodesics [Symplectic
cohomology and Viterbo’s theorem. Free Loop Spaces in
Geometry and Topology, pp. 271–485 (2015)].
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Singular chains

For any k ∈ Z+, the standard k-simplex ∆k is the subspace of
Rk+1 consisting of (k + 1)-tuples (t0, t1, . . . , tk) with ti ≥ 0 and
t0 + t1 + · · ·+ tk = 1. A singular k-simplex in a topological space
X is a continuous map σ : ∆k → X .

For k ≥ 0, Ck(X ;Z) is the free Z-module with generators the
singular k-simplices, i.e. an element∑

i∈I
aiσi ∈ Ck(X ;Z)

is a formal sum, where ai ∈ Z, the σi are k-simplices, and ai is
non-zero for only a finite number of i ∈ I .

If A ⊆ X is a subspace, the inclusion i : A → X induces a
homomorphism i∗ : Ck(A;Z) → Ck(X ;Z), and

Ck(X ,A;Z) def
= Ck(X ;Z)/Ck(A;Z).
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Singular homology with integer coefficients

There are face maps F k
i : ∆k−1 → ∆k defined by

F k
i (t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti , . . . , tk−1) ⊂ ∆k

for 0 ≤ i ≤ k , which determine a singular boundary operator

∂k : Ck(X ;Z) → Ck−1(X ;Z),

defined on a generator σ ∈ Ck(X ;Z) by

∂k(σ) = σ ◦ F k
0 − σ ◦ F k

1 + · · ·+ (−1)kσ ◦ F k
k .

It descends to a boundary operator

∂k : Ck(X ,A;Z) → Ck−1(X ,A;Z)

that satisfies ∂k ◦ ∂k+1 = 0, and hence for all k ≥ 0 we can define

Hk(X ,A;Z) def
= Zk(X ,A;Z)/Bk(X ,A;Z) def

= kernel ∂k/image ∂k+1.
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Connecting homomorphisms

For any A ⊆ X there is a connecting homomorphism

δk : Hk(X ,A) → Hk−1(A)

for all k which fits into the following exact sequence.

· · · −→ Hk(A)
i∗−→ Hk(X )

j∗−→ Hk(X ,A)
δk−→ Hk−1(A) −→ · · ·

For a triple A ⊆ B ⊆ X the connecting homomorphism and the
inclusion j : (B, ∅) → (B,A) induce a connecting homomorphism

δ∗ = j∗ ◦ δk : Hk(X ,B)
δk−→ Hk−1(B)

j∗−→ Hk−1(B,A)

that fits into the following exact sequence.

· · · −→ Hk(B,A)
i∗−→ Hk(X ,A)

j∗−→ Hk(X ,B)
δ∗−→ Hk−1(B,A) −→ · · ·
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CW-complexes

A CW-complex is built step by step by successive operations called
attaching cells.

Let Dn ⊂ Rn be the unit n-disk and Sn−1 = ∂Dn the unit
(n − 1)-sphere. If f∂ : Sn−1 → X is a continuous map into a
topological space X , we denote by

X ∪f∂ Dn

the quotient space of the disjoint union X ⨿ Dn where
x ∈ ∂Dn = Sn−1 is identified with f∂(x) ∈ X . We say that
X ∪f∂ Dn is obtained from X by attaching an n-cell and f∂ is
called the attaching map.
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Attaching a 2-cell
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CW-structures

Definition

A topological space X has a CW-structure if there are subspaces
X (n) with

X (0) ⊆ X (1) ⊆ · · · ⊆ X =
⋃

n∈Z+

X (n)

such that

X (0) is a discrete set of points,

X (n+1) is obtained from X (n) by attaching (n + 1)-cells for all
n ≥ 0,

X has the weak topology. This means that a subspace of X
is open if and only if its intersection with X (n) is open in X (n)

for all n ∈ Z+.
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CW-chains

Lemma

Hk(X
(n),X (n−1);Z) ≈

{
Cn(X ;Z) for k = n
0 otherwise.

where
Cn(X ;Z) ≈

⊕
σ

Hn(D
n
σ , ∂D

n
σ ;Z) ≈

⊕
σ

Z

is the free Z-module generated by the n-cells of X . Moreover, the
map ⊕

σ

fσ∗ :
⊕
σ

Hn(D
n
σ , ∂D

n
σ ;Z) → Hn(X

(n),X (n−1);Z)

is an isomorphism.
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The CW-boundary operator

Define the CW-boundary operator

∂n : Cn(X ;Z) → Cn−1(X ;Z)

to be the composition

Cn(X ;Z) Ψn→ Hn(X
(n),X (n−1))

δ∗→ Hn−1(X
(n−1),X (n−2))

Φn−1→ Cn−1(X ;Z)

where

Ψn : Cn(X ;Z) ≈−→ Hn(X
(n),X (n−1))

Φn−1 : Hn−1(X
(n−1),X (n−2))

≈−→ Cn−1(X ;Z)

are given by the above lemma, and the map δ∗ is the connecting
homomorphism of the triple (X (n),X (n−1),X (n−2)).

David Hurtubise with Augustin Banyaga and Peter Spaeth Twisted Morse Complexes



Singular and CW-Homology with Integer Coefficients
Morse Homology with Integer Coefficients

Homology with Local Coefficients
Main Theorem and Applications

Singular homology with integer coefficients
Connecting homomorphisms
CW-homology with integer coefficients
The CW-Homology Theorem

The CW-Homology Theorem

Theorem (CW-Homology Theorem)

If X is a CW-complex, then ∂n : Cn(X ;Z) → Cn−1(X ;Z) satisfies
∂n−1 ◦ ∂n = 0 and is given by

∂n(σ) =
∑
τ

[σ : τ ]τ

where [σ : τ ] is the degree of the map pτ ◦ f∂σ : ∂Dn
σ → Sn−1

τ .
Moreover, there is a natural identification of the homology of the
complex (C ∗(X ;Z), ∂∗) with the singular homology H∗(X ;Z).

In the above theorem, f∂σ : ∂Dn
σ → X (n−1) is the attaching map of

the n-cell σ, τ is an (n − 1)-cell, and pτ is the composition

X (n−1) → X (n−1)/X (n−2) → Sn−1
τ .
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Morse functions

1 The Hessian Hp(f ) of a smooth function f : M → R at a
critical point p ∈ M is a symmetric bilinear map
Hp(f ) : TpM × TpM → R whose matrix in local coordinates
ϕ(x) = (x1, . . . , xm) is given by

Mp(f ) =

(
∂2(f ◦ ϕ−1)

∂xi∂xj
ϕ(p)

)
.

2 The dimension of the subspace of TpM on which Hp(f ) is
negative definite is called the index of p, i.e. the number of
negative eigenvalues of Mp(f ), and is denote by λp.

3 The critical point p is said to be non-degenerate if and only
if the Hessian Hp(f ) is non-degenerate.

4 A Morse function f : M → R on a smooth manifold M is a
smooth function whose critical points are all non-degenerate.
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Stable and unstable manifolds

Let p ∈ M be a critical point of a smooth function f : M → R on
a smooth Riemannian manifold (M, g) of dimension m < ∞, and
let φ : R×M → M be the 1-parameter family of diffeomorphisms
determined by −∇f . The stable manifold of p is

W s(p) = {x ∈ M| lim
t→∞

φt(x) = p}

and the unstable manifold of p is

W u(p) = {x ∈ M| lim
t→−∞

φt(x) = p}.

The Stable/Unstable Manifold Theorem: If p is a
nondegenerate critical point, then the stable manifold W s(p) is a
smoothly embedded open disk of dimension m − λp and the
unstable manifold W u(p) is a smoothly embedded open disk of
dimension λp.
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Stable and unstable manifolds on T 2
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s
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Morse-Smale transversality

A pair (f , g) is called Morse-Smale if and only if all the stable and
unstable manifolds intersect transversally, i.e. W u(q) ⋔ W s(p) for
all p, q ∈ Cr(f ).

If W u(q) ∩W s(p) ̸= ∅, then this condition implies that
W u(q) ∩W s(p) is a manifold of dimension λq − λp and the
moduli space

M(q, p) = (W u(q) ∩W s(p)) /R

is a manifold of dimension λq − λp − 1.

Note: The dimension of M does not affect the dimension of the
moduli space M(q, p).
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A Morse-Smale function on T 2 (tilted)
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The Morse-Smale-Witten chain complex

Let f : M → R be a Morse-Smale function on a compact smooth
Riemannian manifold (M, g) of dimension m < ∞, and assume
that orientations for the unstable manifolds of f have been chosen.
Let Ck(f ) be the free abelian group generated by the critical points
of index k, and let

C∗(f ) =
m⊕

k=0

Ck(f ).

Define a homomorphism ∂k : Ck(f ) → Ck−1(f ) by

∂k(q) =
∑

p∈Crk−1(f )

n(q, p)p

where n(q, p) is the number of gradient flow lines from q to p
counted with sign. The pair (C∗(f ), ∂∗) is called the
Morse-Smale-Witten chain complex of f .
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Oriented moduli spaces of gradient flow lines

Choosing orientations for all the unstable manifolds W u(q)
determines an orientation on W (q, p) for all p, q ∈ Cr(f ) via

T∗W (q, p) �
� // T∗W

u(q)|W (q,p)
// // ν∗(W (q, p),W u(q))|W (q,p),

where the fibers of the normal bundle are isomorphic to TpW
u(p)

via the gradient flow.

The λq − λp − 1 manifold M(q, p) = W (q, p)/R is then oriented
by choosing any regular value y between f (p) and f (q), identifying
M(q, p) = W (q, p) ∩ f −1(y), and for any x ∈ W (q, p) ∩ f −1(y)
declaring Bx to be a positive basis for TxM(q, p) if and only if
(−(∇f )(x),Bx) is a positive basis for TxW (q, p).
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The Morse Homology Theorem

Theorem

Let f : M → R be a Morse function on a smooth manifold M.
Suppose that Mt = {x ∈ M| f (x) ≤ t} is compact for all t ∈ R.
Then M has the homotopy type of a CW-complex X with one cell
of dimension k for each critical point of index k.

So, we can use the CW-complex X ≃ M and the CW-Homology
Theorem to compute the homology of M, even if (f , g) is not
Morse-Smale.

Theorem (Morse Homology Theorem)

If (f , g) is Morse-Smale, then the pair (C∗(f ), ∂∗) is a chain
complex, and its homology is isomorphic to the singular homology
H∗(M;Z).
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The height function on a tilted 2-torus
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C2(f )
∂2 //

OO

≈
��

C1(f )OO
≈
��

∂1 // C0(f )OO
≈
��

// 0

< s >
∂2 // < q, r >

∂1 // < p > // 0
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The height function on a deformed 2-sphere

C2(f )
∂2 //

OO

≈
��

C1(f )OO
≈
��

∂1 // C0(f )OO
≈
��

// 0

< r , s >
∂2 // < q >

∂1 // < p > // 0
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Unstable manifolds and CW-structures

Theorem (Qin, J. Fixed Point Theory Appl. (2021))

Let f : M → R be a Morse-Smale function on a closed, finite
dimensional, smooth, Riemannian manifold (M, g).

1 The unstable manifolds of f determine a CW-structure on M.

2 If q, p ∈ Cr(f ) with λq − λp = 1, then

[W u(q) : W u(p)] = n(q, p).

The proof relies on the smooth manifold with corners structure on
M(q, p) and topological equivalence.

Similar results were announced or proved earlier for special metrics:
Audin and Damian (2014),Burghelea and Haller (2001), Burghelea,
Friedlander, and Kappeler (2010), Laudenbach (1992), Qin (2010).
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Definition (Bundles of abelian groups)

A bundle of abelian groups G over a topological space X
associates to every point x ∈ X an abelian group Gx and to every
continuous path γ : [0, 1] → X a homomorphism
γ∗ : Gγ(1) → Gγ(0) such that the following conditions are satisfied.

1 If two paths γ1, γ2 : [0, 1] → X from x ∈ X to y ∈ X are
homotopic rel endpoints, then the homomorphisms from Gy to
Gx associated to γ1 and γ2 are the same, i.e. (γ1)∗ = (γ2)∗.

2 If γ : [0, 1] → X is constant, then γ∗ is the identity.

3 If γ1, γ2 : [0, 1] → X are paths with γ1(1) = γ2(0), then
(γ1γ2)∗ = (γ1)∗ ◦ (γ2)∗, where γ1γ2 denotes the
concatenation of γ1 and γ2.

Alternately: A bundle of abelian groups G is a functor from the
fundamental groupoid of X to the category of abelian groups.
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Definition (Isomorphic bundles)

Suppose that G1 and G2 are both bundles of abelian groups over a
topological space X . If there exists a family of isomorphisms
Φ : G1 → G2 such that for every continuous path γ : [0, 1] → X
the diagram

(G1)γ(1)
γ
G1
∗ //

Φγ(1)

��

(G1)γ(0)

Φγ(0)

��
(G2)γ(1)

γ
G2
∗ // (G2)γ(0)

commutes, then G1 and G2 are said to be isomorphic.

Note: A bundle of abelian groups that is isomorphic to a
constant bundle (γ∗ = id for all γ) is called simple. A bundle of
abelian groups G is simple if and only if for any x , y ∈ X the
homomorphism γ∗ is independent of the path γ from x to y .
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The η-twisted local coefficient system

Example (The local coefficient system eη )

Let η ∈ Ω1
cl(M,R) be a closed smooth real valued 1-form on a

finite dimensional smooth manifold M. To each point x ∈ M
associate the additive abelian group R, and to each smooth path
γ : [0, 1] → M associate the homomorphism γ∗ : Rγ(1) → Rγ(0)

defined by

γ∗(s) = e
∫ 0
1 γ∗(η) · s for all s ∈ R.

This defines a bundle of (additive) R groups over M, since every
continuous path is homotopic rel endpoints to a smooth path.

Lemma

If η1, η2 ∈ Ω1
cl(M,R) are in the same de Rham cohomology class,

then eη1 is isomorphic to eη2 .
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Singular chains with coefficients in G

Let ∆k denote the standard k-simplex with vertices e0, . . . , ek , and
let Ck(X ;G ) be the set of all functions c such that

1 For every singular k-simplex u : ∆k → X , c(u) ∈ Gu(e0) is
defined.

2 The set of singular simplices u such that c(u) ̸= 0 is finite.

Elements of the abelian group Ck(X ;G ) are called singular
k-chains with coefficients in G , and every c ∈ Ck(X ;G ) can be
represented as a finite sum

c =
n∑

i=1

c(ui ) · ui

where u1, . . . , un are the singular simplices such that c(ui ) ̸= 0 and
c(ui ) ∈ Gui (e0) for all i = 1, . . . , n.
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Singular homology with coefficients in G

Definition

The singular boundary operator with coefficients in G is
defined to be the homomorphism ∂k : Ck(X ;G ) → Ck−1(X ;G )
given on an elementary chain g · u by

∂k(g · u) = (γu)∗(g) · u ◦ F0 +
k∑

i=1

(−1)ig · u ◦ Fi

where (γu)∗ : Gu(e0) → Gu(e1) is the homomorphism associated to
the path γu(t) = u((1− t)e1 + t e0) from u(e1) to u(e0) and
Fi : ∆

k−1 ↪→ ∆k is the inclusion onto the face opposite ei for all
i = 0, . . . , k − 1. The pair (C∗(X ;G ), ∂∗) is a chain complex, and
its homology groups H∗(X ;G ) are called the singular homology
groups of X with coefficients in the bundle G .
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Eilenberg’s Theorem and equivariant homology

Suppose that (X , x0) is a connected topological space and G0 is an
abelian group on which π1(X , x0) acts. There is a chain complex
(G0 ⊗π1 C∗(X̃ ), ∂̄∗), where the tensor product is taken over
π1(X , x0) and the boundary operator ∂̄∗ is induced from the
boundary operator on the singular chains in X̃ . The homology
groups of this complex are the equivariant homology groups
E∗(X̃ ;G0).

Theorem (Eilenberg)

If G is a bundle of abelian groups in the isomorphism class
determined by the action of π1(X , x0) on G0, then Hk(X ;G ) is
isomorphic to Ek(X̃ ;G0) for all k.
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Local coefficients on a CW-complex

If G is a local coefficient system on a CW-complex X , the triple
(X (k−2),X (k−1),X (k)) determines a connecting homomorphism

Hk(X
(k),X (k−1);G )

δk // Hk−1(X
(k−1);G )

that can be composed with the map

Hk−1(X
(k−1);G )

j∗→ Hk−1(X
(k−1),X (k−2);G )

induced from the inclusion j : X (k−2) ↪→ X (k−1) to give a map

Hk(X
(k),X (k−1);G )

∂̃k // Hk−1(X
(k−1),X (k−2);G ).

The above map satisfies ∂̃k−1 ◦ ∂̃k = 0, and the homology groups
of the chain complex with boundary operator ∂̃k and kth-chain
group Hk(X

(k),X (k−1);G ) are isomorphic to the singular homology
groups of X with coefficients in the bundle G .
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Regular CW-complexes

Definition

A CW-complex X is regular if every closed k-cell ek , with k > 0,
is homeomorphic to ∆k .

Regular CW-complexes satisfy several properties which are not
necessarily satisfied by nonregular CW-complexes. For instance,

1 If j < k and e j and ek are cells such that e j ∩ ėk ̸= ∅, then
e j ⊂ ėk .

2 If ek and ek+2 are cells such that ek is a face of ek+2, then
there are exactly two (k + 1)-cells ek+1 such that ek is a
proper face of ek+1 and ek+1 is a proper face of ek+2, i.e.
ek < ek+1 < ek+2.

3 The incidence number [ek : ek−1] is ±1 if ek−1 < ek and zero
otherwise.
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A regular CW-structure on S1
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For each k-cell ekσ in a regular CW-complex X choose a basepoint
x(ekσ). This determines an isomorphism⊕

σ

(fσ)∗ :
⊕
σ

Hk(∆
k , ∆̇k ;Gx(ekσ)

)
≈−→ Hk(X

(k),X (k−1);G ).

The definition of the induced map (fσ)∗ requires both a map of
spaces fσ : (∆k , ∆̇k) → (X (k),X (k−1) and a homomorphism
γ∗ : Gx(ekσ)

→ f ∗σ (G ). We take the homomorphism γ∗ to be the one
defined by restricting the local coefficient system G to the simply
connected space ekσ . (This works because X is regular.) That is,
for any point x ∈ ∆k there is a unique homotopy class of paths rel
endpoints from fσ(x) to x(ekσ) and hence a well-defined
homomorphism Gx(ekσ)

→ Gfσ(x).
Define

CWk(X ;G )
def
=

{∑
σ

gekσ

∣∣∣∣∣ g ∈ Gx(ekσ)

}
≈ Hk(X

(k),X (k−1);G )

David Hurtubise with Augustin Banyaga and Peter Spaeth Twisted Morse Complexes



Singular and CW-Homology with Integer Coefficients
Morse Homology with Integer Coefficients

Homology with Local Coefficients
Main Theorem and Applications

Local coefficients
Singular homology with local coefficients
CW-homology with local coefficients
Morse homology with local coefficients

Steenrod’s CW-boundary operator

Steenrod’s cellular boundary operator with coefficients in G
on a regular CW-complex X is defined to be the homomorphism

∂k : CWk(X ;G ) → CWk−1(X ;G )

given on an elementary chain gek by

∂k(ge
k) =

∑
ek−1<ek

[ek : ek−1](γek−1ek )∗(g)e
k−1,

where (γek−1ek )∗ : Gx(ek ) → Gx(ek−1) denotes the isomorphism

determined by any path from x(ek−1) to x(ek) contained in the
closure of ek . We will call the pair (CW∗(X ;G ), ∂∗) Steenrod’s
CW-chain complex with coefficients in the bundle G .
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The Twisted CW-Homology Theorem

Theorem (Twisted CW-Homology Theorem)

If X is a regular CW-complex and G is a bundle of abelian groups
over X , then the singular boundary operator with coefficients in G
induces Steenrod’s cellular boundary operator with coefficients in
G. That is, the following diagram commutes.

CWk(X ;G )
∂k //

OO

��

CWk−1(X ;G )
OO

��
Hk(X

(k),X (k−1);G )
∂̃k // Hk−1(X

(k−1),X (k−2);G )

Thus, the homology of Steenrod’s CW-chain complex
(CW∗(X ;G ), ∂∗) is isomorphic to the singular homology of X with
coefficients in the bundle G.
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The twisted Morse-Smale-Witten chain complex

Let G be a bundle of abelian groups and (f , g) a Morse-Smale pair
on a finite dimensional closed smooth manifold M. Fix orientations
on the unstable manifolds, and for all k = 0, . . . ,m define

Ck(f ;G )
def
=

 ∑
q∈Crk (f )

gq

∣∣∣∣∣∣ g ∈ Gq

 ≈
⊕

q∈Crk (f )

Gq,

and ∂G
k : Ck(f ;G ) → Ck−1(f ;G ) by

∂G
k (gq) =

∑
p∈Crk−1(f )

∑
ν∈M(q,p)

ϵ(ν)γν∗ (g)p,

where γν : [0, 1] → M is any continuous path from p to q whose
image coincides with the image of ν ∈ M(q, p) and ϵ(ν) = ±1 is
the sign determined by the orientation on M(q, p).
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The η-twisted Morse-Smale-Witten chain complex

Let η ∈ Ω1
cl(M,R) be a closed 1-form and (f , g) a Morse-Smale

pair on a finite dimensional closed smooth manifold M. We have

Ck(f ; e
η) ≈ Ck(f )⊗ R,

where Ck(f ) is the free abelian group generated by the critical
points q of index k . Fixing orientations on the unstable manifolds
of (f , g), the homomorphism ∂η

k : Ck(f )⊗ R → Ck−1(f )⊗ R is
given on a critical point q ∈ Crk(f ) by

∂η
k (q) =

∑
p∈Crk−1(f )

∑
ν∈M(q,p)

ϵ(ν) exp

(∫
R
γ∗ν(η)

)
p,

where γν : R → M is any gradient flow line from q to p
parameterizing ν ∈ M(q, p) and ϵ(ν) = ±1 is the sign determined
by the orientation on M(q, p).
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The constant bundle G = Z

If G = Z is constant and g ∈ Z, then

∂G
k (gq) =

∑
p∈Crk−1(f )

∑
ν∈M(q,p)

ϵ(ν)γν∗ (g)p

=
∑

p∈Crk−1(f )

∑
ν∈M(q,p)

ϵ(ν) gp

=
∑

p∈Crk−1(f )

g

 ∑
ν∈M(q,p)

ϵ(ν)

 p

= g
∑

p∈Crk−1(f )

n(q, p)p

= g ∂k(q) = ∂k(gq).
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The height function on a circle

Consider the height function f : S1 → R on the unit circle
S1 ⊂ R2 with a critical point q of index 1 and a critical point p of
index 0. Orient the unstable manifold of q clockwise and the
unstable manifold W u(p) = {p} with +1.

q

p

f

y

+1¡1

S 1

°
r

°
l
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The (untwisted) Morse-Smale-Witten chain complex

The (untwisted) Morse-Smale-Witten chain complex of f is

0 // C1(f )
∂1 //

OO

≈
��

C0(f )OO
≈
��

// 0

0 // < q >
∂1 // < p > // 0

with ∂1(q) = 0 zero since the two gradient flow lines have opposite
signs. So,

Hk(C∗(f ), ∂∗) ≈ Z if k = 0, 1

Hk(C∗(f ), ∂∗) ≈ 0 otherwise.
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The η-twisted Morse-Smale-Witten chain complex

Let η be a closed 1-form on S1 and eη its associated flat R-bundle.
The η-twisted Morse-Smale-Witten boundary operator is given by

∂η
1 (q) =

(
exp

(∫ 0

1
(γr )∗(η)

)
− exp

(∫ 0

1
(γ l)∗(η)

))
p.

If η is exact, then H∗((C∗(f ; e
η), ∂η

∗ )) = H∗(S
1;R). However, if η

is not exact, then ∫ 0

1
(γr )∗(η) ̸=

∫ 0

1
(γ l)∗(η),

and Hk((C∗(f ; e
η), ∂η

∗ )) ≈ 0 for all k .
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The Twisted Morse Homology Theorem

Theorem (Twisted Morse Homology Theorem)

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, g), and let G
be a bundle of abelian groups over M. The homology of the
Morse-Smale-Witten chain complex with coefficients in G is
isomorphic to the singular homology of M with coefficients in G.
That is,

Hk((C∗(f ;G ), ∂G
∗ )) ≈ Hk(M;G )

for all k = 0, . . . ,m.

Proved by comparing with Steenrod’s twisted CW-complex for
regular CW-complexes.
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Proof outline (invariance)

Theorem (Invariance Theorem)

Let (M, g) be a closed finite dimensional smooth Riemannian
manifold, and let G be a bundle of abelian groups over M. Then
the homology of the twisted Morse-Smale-Witten chain complex
(C∗(f ;G ), ∂G

∗ ) is independent of the Morse-Smale pair (f , g) and
depends only on the isomorphism class of the bundle of abelian
groups G.

Proved in Chapter 3 using standard continuation arguments from
Floer theory. The proof relies on the smooth manifolds with
corners structure on M(q, p).
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Proof outline (triangulations and unstable manifolds)

Theorem (Banyaga, H-, Spaeth)

On any closed finite dimensional smooth manifold M there exists a
smooth Morse-Smale pair (f , g) such that the unstable manifolds
coincide with a smooth triangulation of M. Hence, the unstable
manifolds of (f , g) determine a regular CW-structure on M.
Moreover, the Riemannian metric g can be chosen such that
around every critical point of f there is a Morse chart that is an
isometry respect to the standard Euclidean metric on Rm.

Proved in Section 4.4. The fundamental identity

#M(q, p) = [ekq : ek−1
p ]

follows easily for the function constructed in the above theorem,
and hence the Morse-Smale-Witten boundary operator coincides
with Steenrod’s CW-boundary operator.
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A minimal triangulation of RP2 with ten 2-simplices
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Lichnerowicz cohomology (Chapter 5)

For any k-form ξ ∈ Ωk(M,R) define dηξ = dξ + η ∧ ξ. It is easy
to verify that dη ◦ dη = 0, and hence dη defines a cochain complex

Ω0(M,R)
dη // Ω1(M,R)

dη // Ω2(M,R)
dη // · · ·

called the Lichnerowicz cochain complex.

Theorem (η-Twisted Morse de Rham Theorem)

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold (M, g). For any
η ∈ Ω1

cl(M,R), the η-twisted Morse cohomology groups are
isomorphic to the Lichnerowicz cohomology groups defined by −η,
i.e.

Hk((C
∗(f ; eη), δη∗)) ≈ Hk

−η(M)

for all k = 0, . . . ,m.
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Locally conformal symplectic manifolds

Theorem

Let (M,Ω) be a closed, smooth, finite dimensional LCS manifold
with Lee form η ∈ Ω1

cl(M,R), i.e. dΩ = −η ∧ Ω. Then the
η-twisted Morse homology groups H∗((C∗(f )⊗ R, ∂η

∗ )) and the
η-twisted Morse cohomology groups H∗((C

∗(f ; eη), δη∗)) are
invariants of the conformal class of Ω.

Proved in Chapter 5.
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Parallel 1-forms (Section 6.1)

Theorem (Parallel 1-Form Obstruction)

Let f : M → R be a smooth Morse-Smale function on a closed
finite dimensional smooth Riemannian manifold M, and assume
there exists a nonzero closed 1-form η on M such that
Hk((C

∗(f ; eη), δη∗)) ̸= 0 for some k. Then for any nonzero closed
1-form ζ on M such that [ζ] = [η] ∈ H1(M;R) the 1-form ζ is not
parallel with respect to any Riemannian metric on M.

Proved in Section 6.1 using a result of León, López, Marrero, and
Padrón (2003).
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H-spaces (Section 6.2)

An H-space is a topological space X together with a continuous
map m : X × X → X and an element e ∈ X such that
m(e, ·) : X → X and m(·, e) : X → X are homotopic to the
identity through maps that preserve e.

Theorem (Associative H-space Obstruction)

Let (f , g) be a smooth Morse-Smale pair on a closed path con-
nected finite dimensional smooth manifold M. If there exists a local
coefficient system L of rank one vector spaces on M such that

1 L is not simple, i.e. L is not isomorphic to a constant bundle,
and

2 Hk((C∗(f ;L), ∂L
∗ )) ̸= 0 for some k,

then M is not an associative H-space.

Proved using a result of Albers, Frauenfelder, and Oancea (2017).
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Novikov homology (Section 6.3)

S.P. Novikov noted that a closed 1-form ζ on a differentiable
manifold M defines a “multivalued function” S by integrating ζ
over paths, and S becomes single valued on an appropriate
covering space M̃ → M.

Problem. To construct an analogue of Morse theory for the
multivalued functions S . That is, to find a relationship between
the stationary points dS = 0 of different index and the topology of
the manifold M.
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Approaches using the dynamics of a flow

The generalization of the Morse-Smale-Witten chain complex to
closed 1-forms that determine integral cohomology classes, i.e. to
circle valued Morse functions, was carried out by A. Pajitnov
(1995), and the construction of a Morse-Smale-Witten type
complex using an arbitrary closed 1-form was given by D.
Burghelea and S. Haller (2001) and F. Latour (2011).

These generalizations all define the boundary operator for the
“Novikov complex” using the dynamics of a flow on a covering of
the manifold determined by the closed 1-form and a Riemannian
metric. The homology of the Novikov complex is isomorphic to the
singular homology of the manifold with local coefficients in a
system of rank one Nov(Γ)-modules.

In Section 6.3 we use twisted Morse complexes to compute the
Novikov numbers of S1, T 2, K 2, and a surface of genus two.
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field, An. Univ. Vest Timiş. Ser. Mat.-Inform. 48 (2010), no.
1-2, 45–126. MR2849328 (2012j:58020)
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