

Twisted Morse Complexes

David Hurtubise
with Augustin Banyaga and Peter Spaeth

Penn State Altoona
DavidHurtubise.com

Penn State University Park
January 30th, 2025

Lecture Notes in Mathematics, Volume 2361, November 2024

Why would we study local coefficients?

“Local coefficients bring an extra level of complication that one tries to avoid whenever possible.”

– Hatcher, Algebraic Topology, Section 3.H.

“For example, the only way to extend Poincaré duality with \mathbb{Z} coefficients to nonorientable manifolds is to use local coefficients.”

– Hatcher, Algebraic Topology, Section 3.H.

Floer homology and symplectic cohomology

Kronheimer and Mrowka use Floer homology of the Seiberg-Witten monopole equation with local coefficients in their book

[Monopoles and Three-manifolds, New Mathematical Monographs, vol. 10. Cambridge University Press, Cambridge (2007)].

The proof of Viterbo's Theorem, which asserts that there is an isomorphism between the twisted homology of the free loop space of a closed differentiable manifold and the symplectic cohomology of its cotangent bundle, given by Abouzaid uses homology with local coefficients on spaces of piecewise geodesics **[Symplectic cohomology and Viterbo's theorem. Free Loop Spaces in Geometry and Topology, pp. 271–485 (2015)]**.

1 Singular and CW-Homology with Integer Coefficients

- Singular homology with integer coefficients
- Connecting homomorphisms
- CW-homology with integer coefficients
- The CW-Homology Theorem

2 Morse Homology with Integer Coefficients

- Morse functions
- Morse-Smale transversality
- Morse homology
- Morse homology vs. CW-homology

3 Homology with Local Coefficients

- Local coefficients
- Singular homology with local coefficients
- CW-homology with local coefficients
- Morse homology with local coefficients

4 Main Theorem and Applications

- Main theorem

Singular chains

For any $k \in \mathbb{Z}_+$, the **standard k -simplex** Δ^k is the subspace of \mathbb{R}^{k+1} consisting of $(k+1)$ -tuples (t_0, t_1, \dots, t_k) with $t_i \geq 0$ and $t_0 + t_1 + \dots + t_k = 1$. A **singular k -simplex** in a topological space X is a continuous map $\sigma : \Delta^k \rightarrow X$.

For $k \geq 0$, $C_k(X; \mathbb{Z})$ is the free \mathbb{Z} -module with generators the singular k -simplices, i.e. an element

$$\sum_{i \in I} a_i \sigma_i \in C_k(X; \mathbb{Z})$$

is a formal sum, where $a_i \in \mathbb{Z}$, the σ_i are k -simplices, and a_i is non-zero for only a finite number of $i \in I$.

If $A \subseteq X$ is a subspace, the inclusion $i : A \rightarrow X$ induces a homomorphism $i_* : C_k(A; \mathbb{Z}) \rightarrow C_k(X; \mathbb{Z})$, and

$$C_k(X, A; \mathbb{Z}) \stackrel{\text{def}}{=} C_k(X; \mathbb{Z}) / C_k(A; \mathbb{Z}).$$

Singular homology with integer coefficients

There are **face maps** $F_i^k : \Delta^{k-1} \rightarrow \Delta^k$ defined by

$$F_i^k(t_0, \dots, t_{k-1}) = (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{k-1}) \subset \Delta^k$$

for $0 \leq i \leq k$, which determine a **singular boundary operator**

$$\partial_k : C_k(X; \mathbb{Z}) \rightarrow C_{k-1}(X; \mathbb{Z}),$$

defined on a generator $\sigma \in C_k(X; \mathbb{Z})$ by

$$\partial_k(\sigma) = \sigma \circ F_0^k - \sigma \circ F_1^k + \dots + (-1)^k \sigma \circ F_k^k.$$

It descends to a boundary operator

$$\overline{\partial}_k : C_k(X, A; \mathbb{Z}) \rightarrow C_{k-1}(X, A; \mathbb{Z})$$

that satisfies $\overline{\partial}_k \circ \overline{\partial}_{k+1} = 0$, and hence for all $k \geq 0$ we can define

$$H_k(X, A; \mathbb{Z}) \stackrel{\text{def}}{=} Z_k(X, A; \mathbb{Z}) / B_k(X, A; \mathbb{Z}) \stackrel{\text{def}}{=} \text{kernel } \overline{\partial}_k / \text{image } \overline{\partial}_{k+1}.$$

Connecting homomorphisms

For any $A \subseteq X$ there is a **connecting homomorphism**

$$\delta_k : H_k(X, A) \rightarrow H_{k-1}(A)$$

for all k which fits into the following exact sequence.

$$\cdots \longrightarrow H_k(A) \xrightarrow{i_*} H_k(X) \xrightarrow{j_*} H_k(X, A) \xrightarrow{\delta_k} H_{k-1}(A) \longrightarrow \cdots$$

For a triple $A \subseteq B \subseteq X$ the connecting homomorphism and the inclusion $j : (B, \emptyset) \rightarrow (B, A)$ induce a **connecting homomorphism**

$$\delta_* = j_* \circ \delta_k : H_k(X, B) \xrightarrow{\delta_k} H_{k-1}(B) \xrightarrow{j_*} H_{k-1}(B, A)$$

that fits into the following exact sequence.

$$\cdots \longrightarrow H_k(B, A) \xrightarrow{i_*} H_k(X, A) \xrightarrow{j_*} H_k(X, B) \xrightarrow{\delta_*} H_{k-1}(B, A) \longrightarrow \cdots$$

CW-complexes

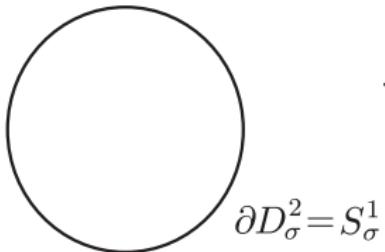
A CW-complex is built step by step by successive operations called **attaching cells**.

Let $D^n \subset \mathbb{R}^n$ be the unit n -disk and $S^{n-1} = \partial D^n$ the unit $(n-1)$ -sphere. If $f_\partial : S^{n-1} \rightarrow X$ is a continuous map into a topological space X , we denote by

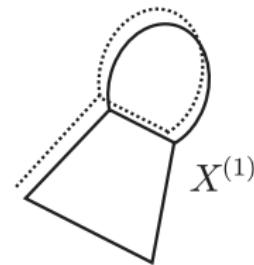
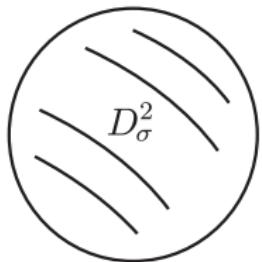
$$X \cup_{f_\partial} D^n$$

the quotient space of the disjoint union $X \amalg D^n$ where $x \in \partial D^n = S^{n-1}$ is identified with $f_\partial(x) \in X$. We say that $X \cup_{f_\partial} D^n$ is obtained from X by **attaching an n -cell** and f_∂ is called the **attaching map**.

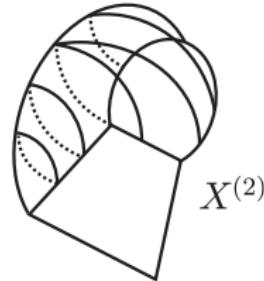
Attaching a 2-cell



$f_{\partial\sigma}$



f_σ



CW-structures

Definition

A topological space X has a **CW-structure** if there are subspaces $X^{(n)}$ with

$$X^{(0)} \subseteq X^{(1)} \subseteq \cdots \subseteq X = \bigcup_{n \in \mathbb{Z}_+} X^{(n)}$$

such that

- $X^{(0)}$ is a discrete set of points,
- $X^{(n+1)}$ is obtained from $X^{(n)}$ by attaching $(n+1)$ -cells for all $n \geq 0$,
- X has the **weak topology**. This means that a subspace of X is open if and only if its intersection with $X^{(n)}$ is open in $X^{(n)}$ for all $n \in \mathbb{Z}_+$.

CW-chains

Lemma

$$H_k(X^{(n)}, X^{(n-1)}; \mathbb{Z}) \approx \begin{cases} \underline{C}_n(X; \mathbb{Z}) & \text{for } k = n \\ 0 & \text{otherwise.} \end{cases}$$

where

$$\underline{C}_n(X; \mathbb{Z}) \approx \bigoplus_{\sigma} H_n(D_{\sigma}^n, \partial D_{\sigma}^n; \mathbb{Z}) \approx \bigoplus_{\sigma} \mathbb{Z}$$

is the free \mathbb{Z} -module generated by the n -cells of X . Moreover, the map

$$\bigoplus_{\sigma} f_{\sigma*} : \bigoplus_{\sigma} H_n(D_{\sigma}^n, \partial D_{\sigma}^n; \mathbb{Z}) \rightarrow H_n(X^{(n)}, X^{(n-1)}; \mathbb{Z})$$

is an isomorphism.

The CW-boundary operator

Define the **CW-boundary operator**

$$\underline{\partial}_n : \underline{C}_n(X; \mathbb{Z}) \rightarrow \underline{C}_{n-1}(X; \mathbb{Z})$$

to be the composition

$$\underline{C}_n(X; \mathbb{Z}) \xrightarrow{\Psi_n} H_n(X^{(n)}, X^{(n-1)}) \xrightarrow{\delta_*} H_{n-1}(X^{(n-1)}, X^{(n-2)}) \xrightarrow{\Phi_{n-1}} \underline{C}_{n-1}(X; \mathbb{Z})$$

where

$$\begin{aligned} \Psi_n : \underline{C}_n(X; \mathbb{Z}) &\xrightarrow{\approx} H_n(X^{(n)}, X^{(n-1)}) \\ \Phi_{n-1} : H_{n-1}(X^{(n-1)}, X^{(n-2)}) &\xrightarrow{\approx} \underline{C}_{n-1}(X; \mathbb{Z}) \end{aligned}$$

are given by the above lemma, and the map δ_* is the connecting homomorphism of the triple $(X^{(n)}, X^{(n-1)}, X^{(n-2)})$.

The CW-Homology Theorem

Theorem (CW-Homology Theorem)

If X is a CW-complex, then $\underline{\partial}_n : \underline{C}_n(X; \mathbb{Z}) \rightarrow \underline{C}_{n-1}(X; \mathbb{Z})$ satisfies $\underline{\partial}_{n-1} \circ \underline{\partial}_n = 0$ and is given by

$$\underline{\partial}_n(\sigma) = \sum_{\tau} [\sigma : \tau] \tau$$

where $[\sigma : \tau]$ is the degree of the map $p_{\tau} \circ f_{\partial\sigma} : \partial D_{\sigma}^n \rightarrow S_{\tau}^{n-1}$.

Moreover, there is a natural identification of the homology of the complex $(\underline{C}_*(X; \mathbb{Z}), \underline{\partial}_*)$ with the singular homology $H_*(X; \mathbb{Z})$.

In the above theorem, $f_{\partial\sigma} : \partial D_{\sigma}^n \rightarrow X^{(n-1)}$ is the attaching map of the n -cell σ , τ is an $(n-1)$ -cell, and p_{τ} is the composition

$$X^{(n-1)} \rightarrow X^{(n-1)} / X^{(n-2)} \rightarrow S_{\tau}^{n-1}.$$

Morse functions

- 1 The **Hessian** $H_p(f)$ of a smooth function $f : M \rightarrow \mathbb{R}$ at a critical point $p \in M$ is a symmetric bilinear map $H_p(f) : T_p M \times T_p M \rightarrow \mathbb{R}$ whose matrix in local coordinates $\phi(x) = (x_1, \dots, x_m)$ is given by

$$M_p(f) = \left(\frac{\partial^2(f \circ \phi^{-1})}{\partial x_i \partial x_j} \phi(p) \right).$$

- 2 The dimension of the subspace of $T_p M$ on which $H_p(f)$ is negative definite is called the **index** of p , i.e. the number of negative eigenvalues of $M_p(f)$, and is denoted by λ_p .
- 3 The critical point p is said to be **non-degenerate** if and only if the Hessian $H_p(f)$ is non-degenerate.
- 4 A **Morse function** $f : M \rightarrow \mathbb{R}$ on a smooth manifold M is a smooth function whose critical points are all non-degenerate.

Stable and unstable manifolds

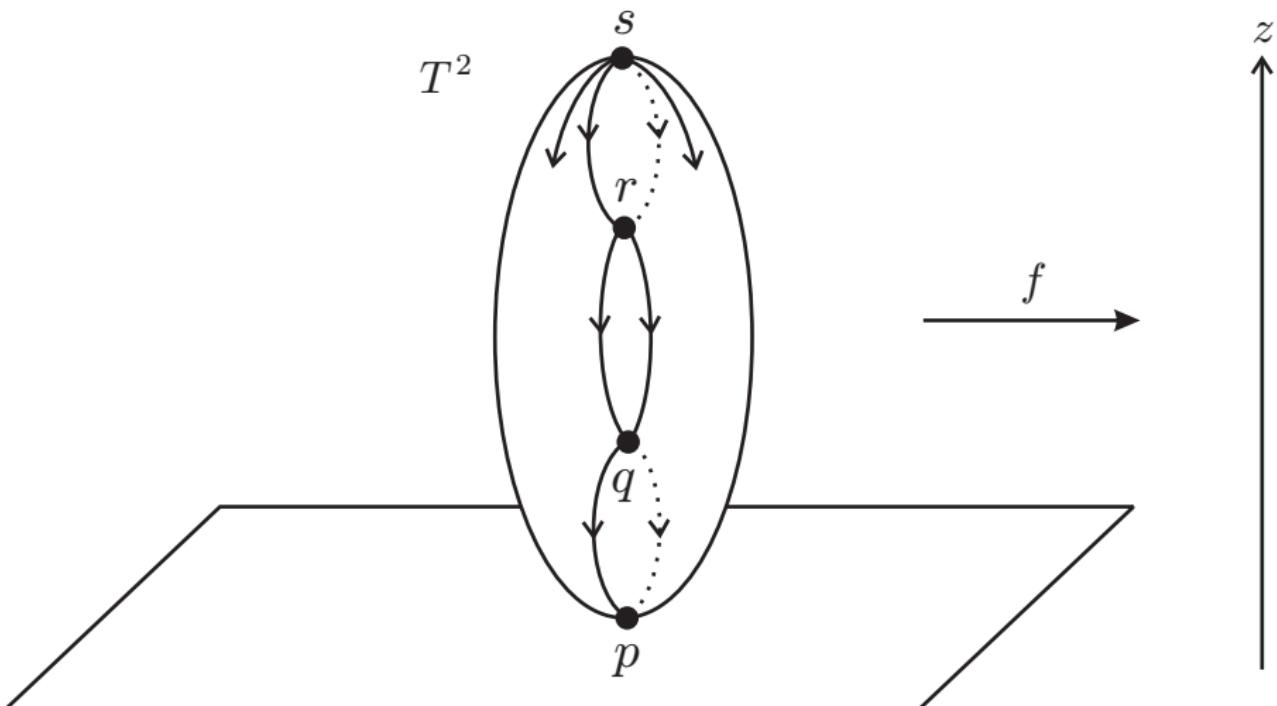
Let $p \in M$ be a critical point of a smooth function $f : M \rightarrow \mathbb{R}$ on a smooth Riemannian manifold (M, g) of dimension $m < \infty$, and let $\varphi : \mathbb{R} \times M \rightarrow M$ be the 1-parameter family of diffeomorphisms determined by $-\nabla f$. The **stable manifold** of p is

$$W^s(p) = \{x \in M \mid \lim_{t \rightarrow \infty} \varphi_t(x) = p\}$$

and the **unstable manifold** of p is

$$W^u(p) = \{x \in M \mid \lim_{t \rightarrow -\infty} \varphi_t(x) = p\}.$$

The Stable/Unstable Manifold Theorem: If p is a nondegenerate critical point, then the stable manifold $W^s(p)$ is a smoothly embedded open disk of dimension $m - \lambda_p$ and the unstable manifold $W^u(p)$ is a smoothly embedded open disk of dimension λ_p .

Stable and unstable manifolds on T^2 

Morse-Smale transversality

A pair (f, g) is called **Morse-Smale** if and only if all the stable and unstable manifolds intersect transversally, i.e. $W^u(q) \pitchfork W^s(p)$ for all $p, q \in Cr(f)$.

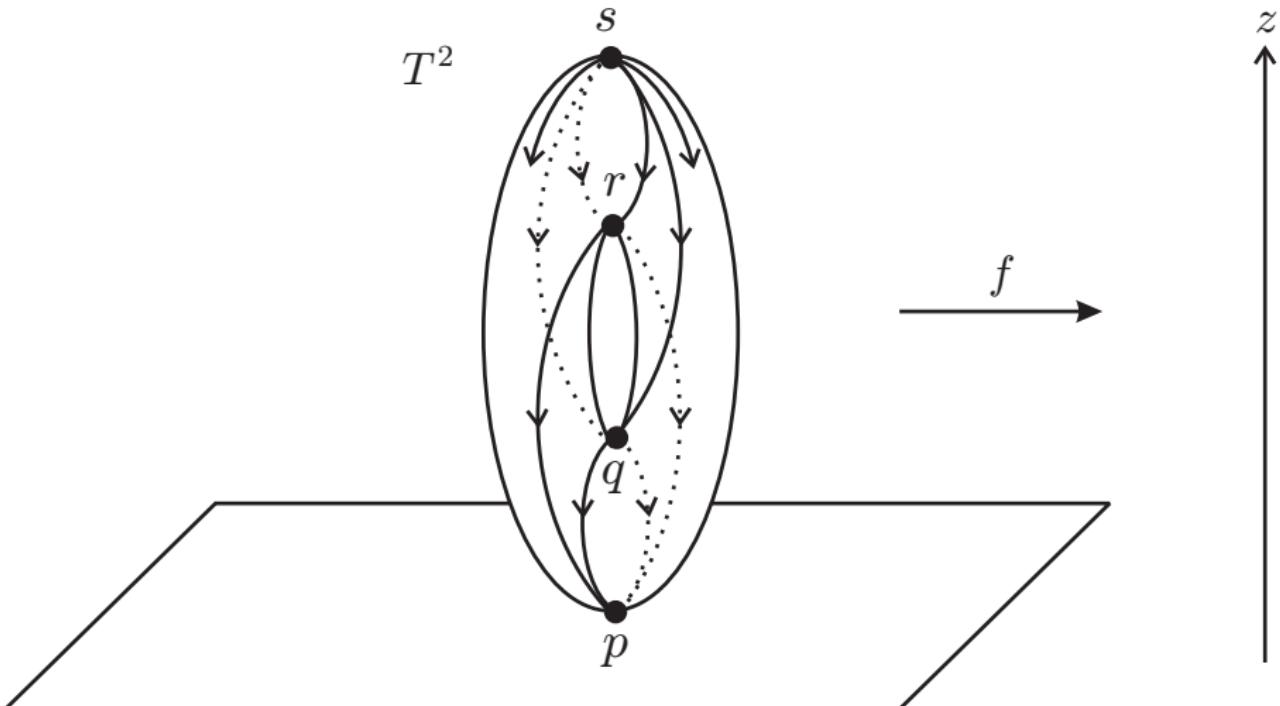
If $W^u(q) \cap W^s(p) \neq \emptyset$, then this condition implies that $W^u(q) \cap W^s(p)$ is a manifold of dimension $\lambda_q - \lambda_p$ and the **moduli space**

$$\mathcal{M}(q, p) = (W^u(q) \cap W^s(p)) / \mathbb{R}$$

is a manifold of dimension $\lambda_q - \lambda_p - 1$.

Note: The dimension of M **does not affect** the dimension of the moduli space $\mathcal{M}(q, p)$.

A Morse-Smale function on T^2 (tilted)



The Morse-Smale-Witten chain complex

Let $f : M \rightarrow \mathbb{R}$ be a Morse-Smale function on a compact smooth Riemannian manifold (M, g) of dimension $m < \infty$, and assume that orientations for the unstable manifolds of f have been chosen.

Let $C_k(f)$ be the free abelian group generated by the critical points of index k , and let

$$C_*(f) = \bigoplus_{k=0}^m C_k(f).$$

Define a homomorphism $\partial_k : C_k(f) \rightarrow C_{k-1}(f)$ by

$$\partial_k(q) = \sum_{p \in \text{Cr}_{k-1}(f)} n(q, p)p$$

where $n(q, p)$ is the number of gradient flow lines from q to p counted with sign. The pair $(C_*(f), \partial_*)$ is called the **Morse-Smale-Witten chain complex** of f .

Oriented moduli spaces of gradient flow lines

Choosing orientations for all the unstable manifolds $W^u(q)$ determines an orientation on $W(q, p)$ for all $p, q \in Cr(f)$ via

$$T_* W(q, p) \hookrightarrow T_* W^u(q)|_{W(q, p)} \longrightarrow \nu_*(W(q, p), W^u(q))|_{W(q, p)},$$

where the fibers of the normal bundle are isomorphic to $T_p W^u(p)$ via the gradient flow.

The $\lambda_q - \lambda_p - 1$ manifold $\mathcal{M}(q, p) = W(q, p)/\mathbb{R}$ is then oriented by choosing any regular value y between $f(p)$ and $f(q)$, identifying $\mathcal{M}(q, p) = W(q, p) \cap f^{-1}(y)$, and for any $x \in W(q, p) \cap f^{-1}(y)$ declaring B_x to be a positive basis for $T_x \mathcal{M}(q, p)$ if and only if $(-(\nabla f)(x), B_x)$ is a positive basis for $T_x W(q, p)$.

The Morse Homology Theorem

Theorem

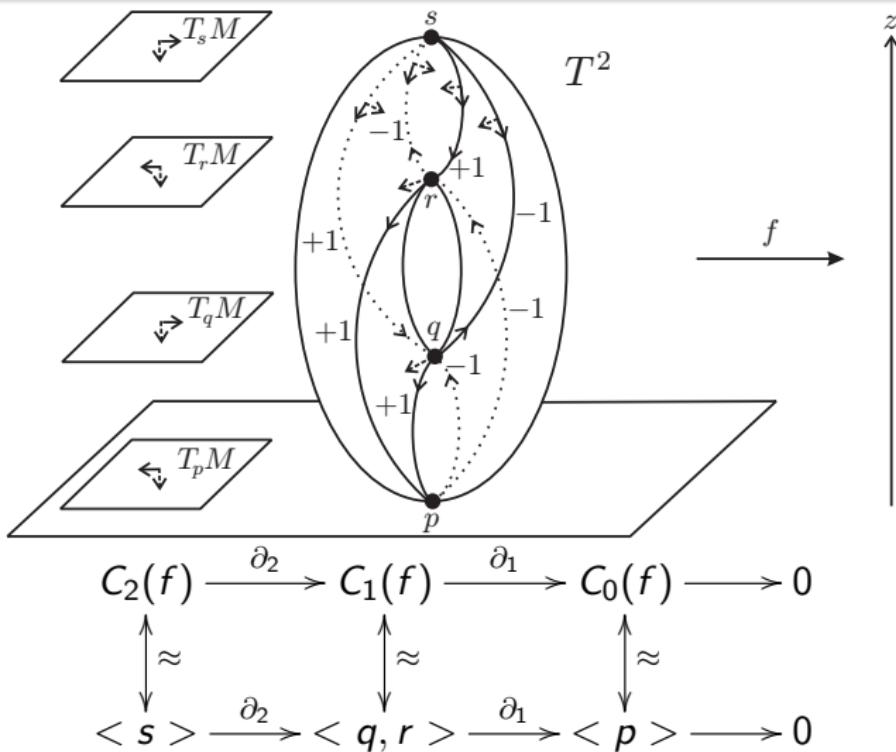
Let $f : M \rightarrow \mathbb{R}$ be a Morse function on a smooth manifold M . Suppose that $M^t = \{x \in M \mid f(x) \leq t\}$ is compact for all $t \in \mathbb{R}$. Then M has the homotopy type of a CW-complex X with one cell of dimension k for each critical point of index k .

So, we can use the CW-complex $X \simeq M$ and the CW-Homology Theorem to compute the homology of M , even if (f, g) is not Morse-Smale.

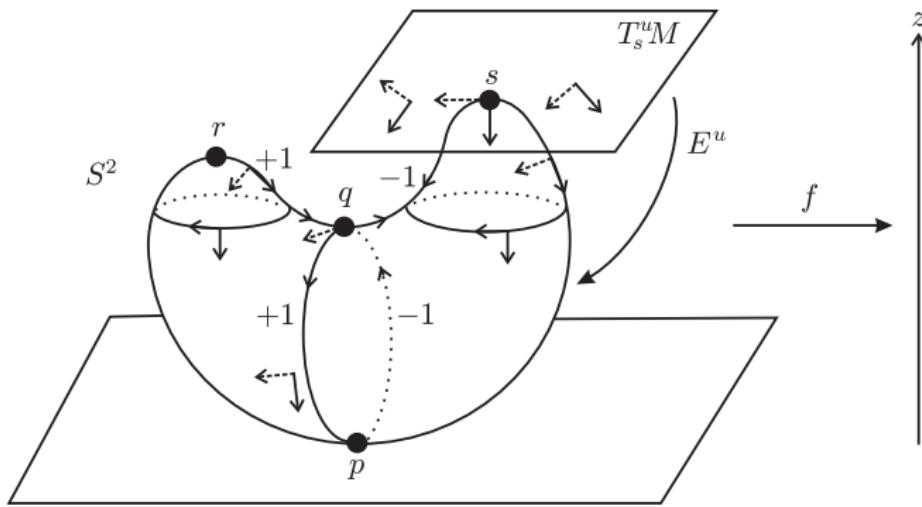
Theorem (Morse Homology Theorem)

If (f, g) is Morse-Smale, then the pair $(C_*(f), \partial_*)$ is a chain complex, and its homology is isomorphic to the singular homology $H_*(M; \mathbb{Z})$.

The height function on a tilted 2-torus



The height function on a deformed 2-sphere



$$\begin{array}{ccccccc}
 C_2(f) & \xrightarrow{\partial_2} & C_1(f) & \xrightarrow{\partial_1} & C_0(f) & \longrightarrow & 0 \\
 \downarrow \approx & & \downarrow \approx & & \downarrow \approx & & \\
 \langle r, s \rangle & \xrightarrow{\partial_2} & \langle q \rangle & \xrightarrow{\partial_1} & \langle p \rangle & \longrightarrow & 0
 \end{array}$$

Unstable manifolds and CW-structures

Theorem (Qin, J. Fixed Point Theory Appl. (2021))

Let $f : M \rightarrow \mathbb{R}$ be a Morse-Smale function on a closed, finite dimensional, smooth, Riemannian manifold (M, g) .

- 1 The unstable manifolds of f determine a CW-structure on M .
- 2 If $q, p \in Cr(f)$ with $\lambda_q - \lambda_p = 1$, then

$$[\overline{W^u}(q) : \overline{W^u}(p)] = n(q, p).$$

The proof relies on the smooth manifold with corners structure on $\overline{\mathcal{M}(q, p)}$ and topological equivalence.

Similar results were announced or proved earlier for special metrics: Audin and Damian (2014), Burghelea and Haller (2001), Burghelea, Friedlander, and Kappeler (2010), Laudenbach (1992), Qin (2010).

Definition (Bundles of abelian groups)

A **bundle of abelian groups** G over a topological space X associates to every point $x \in X$ an abelian group G_x and to every continuous path $\gamma : [0, 1] \rightarrow X$ a homomorphism $\gamma_* : G_{\gamma(1)} \rightarrow G_{\gamma(0)}$ such that the following conditions are satisfied.

- ① If two paths $\gamma_1, \gamma_2 : [0, 1] \rightarrow X$ from $x \in X$ to $y \in X$ are homotopic rel endpoints, then the homomorphisms from G_y to G_x associated to γ_1 and γ_2 are the same, i.e. $(\gamma_1)_* = (\gamma_2)_*$.
- ② If $\gamma : [0, 1] \rightarrow X$ is constant, then γ_* is the identity.
- ③ If $\gamma_1, \gamma_2 : [0, 1] \rightarrow X$ are paths with $\gamma_1(1) = \gamma_2(0)$, then $(\gamma_1\gamma_2)_* = (\gamma_1)_* \circ (\gamma_2)_*$, where $\gamma_1\gamma_2$ denotes the concatenation of γ_1 and γ_2 .

Alternately: A bundle of abelian groups G is a functor from the fundamental groupoid of X to the category of abelian groups.

Definition (Isomorphic bundles)

Suppose that G_1 and G_2 are both bundles of abelian groups over a topological space X . If there exists a family of isomorphisms $\Phi : G_1 \rightarrow G_2$ such that for every continuous path $\gamma : [0, 1] \rightarrow X$ the diagram

$$\begin{array}{ccc} (G_1)_{\gamma(1)} & \xrightarrow{\gamma_*^{G_1}} & (G_1)_{\gamma(0)} \\ \Phi_{\gamma(1)} \downarrow & & \downarrow \Phi_{\gamma(0)} \\ (G_2)_{\gamma(1)} & \xrightarrow{\gamma_*^{G_2}} & (G_2)_{\gamma(0)} \end{array}$$

commutes, then G_1 and G_2 are said to be **isomorphic**.

Note: A bundle of abelian groups that is isomorphic to a **constant bundle** ($\gamma_* = id$ for all γ) is called **simple**. A bundle of abelian groups G is simple if and only if for any $x, y \in X$ the homomorphism γ_* is independent of the path γ from x to y .

The η -twisted local coefficient system

Example (The local coefficient system e^η)

Let $\eta \in \Omega_{\text{cl}}^1(M, \mathbb{R})$ be a closed smooth real valued 1-form on a finite dimensional smooth manifold M . To each point $x \in M$ associate the additive abelian group \mathbb{R} , and to each smooth path $\gamma : [0, 1] \rightarrow M$ associate the homomorphism $\gamma_* : \mathbb{R}_{\gamma(1)} \rightarrow \mathbb{R}_{\gamma(0)}$ defined by

$$\gamma_*(s) = e^{\int_1^0 \gamma^*(\eta)} \cdot s \quad \text{for all } s \in \mathbb{R}.$$

This defines a bundle of (additive) \mathbb{R} groups over M , since every continuous path is homotopic rel endpoints to a smooth path.

Lemma

If $\eta_1, \eta_2 \in \Omega_{\text{cl}}^1(M, \mathbb{R})$ are in the same de Rham cohomology class, then e^{η_1} is isomorphic to e^{η_2} .

Singular chains with coefficients in G

Let Δ^k denote the standard k -simplex with vertices e_0, \dots, e_k , and let $C_k(X; G)$ be the set of all functions c such that

- ① For every singular k -simplex $u : \Delta^k \rightarrow X$, $c(u) \in G_{u(e_0)}$ is defined.
- ② The set of singular simplices u such that $c(u) \neq 0$ is finite.

Elements of the abelian group $C_k(X; G)$ are called **singular k -chains with coefficients in G** , and every $c \in C_k(X; G)$ can be represented as a finite sum

$$c = \sum_{i=1}^n c(u_i) \cdot u_i$$

where u_1, \dots, u_n are the singular simplices such that $c(u_i) \neq 0$ and $c(u_i) \in G_{u_i(e_0)}$ for all $i = 1, \dots, n$.

Singular homology with coefficients in G

Definition

The **singular boundary operator with coefficients in G** is defined to be the homomorphism $\partial_k : C_k(X; G) \rightarrow C_{k-1}(X; G)$ given on an elementary chain $g \cdot u$ by

$$\partial_k(g \cdot u) = (\gamma_u)_*(g) \cdot u \circ F_0 + \sum_{i=1}^k (-1)^i g \cdot u \circ F_i$$

where $(\gamma_u)_* : G_{u(e_0)} \rightarrow G_{u(e_1)}$ is the homomorphism associated to the path $\gamma_u(t) = u((1-t)e_1 + t e_0)$ from $u(e_1)$ to $u(e_0)$ and $F_i : \Delta^{k-1} \hookrightarrow \Delta^k$ is the inclusion onto the face opposite e_i ; for all $i = 0, \dots, k-1$. The pair $(C_*(X; G), \partial_*)$ is a chain complex, and its homology groups $H_*(X; G)$ are called the **singular homology groups of X with coefficients in the bundle G** .

Eilenberg's Theorem and equivariant homology

Suppose that (X, x_0) is a connected topological space and G_0 is an abelian group on which $\pi_1(X, x_0)$ acts. There is a chain complex $(G_0 \otimes_{\pi_1} C_*(\tilde{X}), \bar{\partial}_*)$, where the tensor product is taken over $\pi_1(X, x_0)$ and the boundary operator $\bar{\partial}_*$ is induced from the boundary operator on the singular chains in \tilde{X} . The homology groups of this complex are the **equivariant homology groups** $E_*(\tilde{X}; G_0)$.

Theorem (Eilenberg)

If G is a bundle of abelian groups in the isomorphism class determined by the action of $\pi_1(X, x_0)$ on G_0 , then $H_k(X; G)$ is isomorphic to $E_k(\tilde{X}; G_0)$ for all k .

Local coefficients on a CW-complex

If G is a local coefficient system on a CW-complex X , the triple $(X^{(k-2)}, X^{(k-1)}, X^{(k)})$ determines a **connecting homomorphism**

$$H_k(X^{(k)}, X^{(k-1)}; G) \xrightarrow{\delta_k} H_{k-1}(X^{(k-1)}; G)$$

that can be composed with the map

$$H_{k-1}(X^{(k-1)}; G) \xrightarrow{j_*} H_{k-1}(X^{(k-1)}, X^{(k-2)}; G)$$

induced from the inclusion $j : X^{(k-2)} \hookrightarrow X^{(k-1)}$ to give a map

$$H_k(X^{(k)}, X^{(k-1)}; G) \xrightarrow{\tilde{\partial}_k} H_{k-1}(X^{(k-1)}, X^{(k-2)}; G).$$

The above map satisfies $\tilde{\partial}_{k-1} \circ \tilde{\partial}_k = 0$, and the homology groups of the chain complex with boundary operator $\tilde{\partial}_k$ and k^{th} -chain group $H_k(X^{(k)}, X^{(k-1)}; G)$ are isomorphic to the singular homology groups of X with coefficients in the bundle G .

Regular CW-complexes

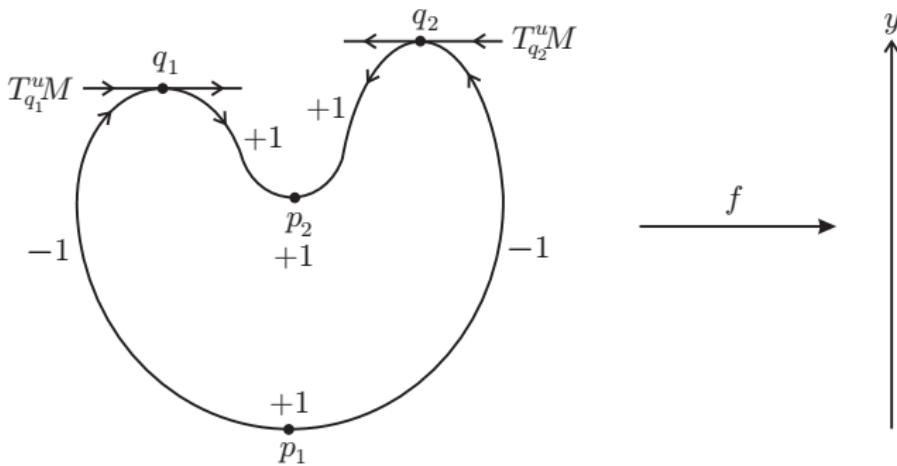
Definition

A CW-complex X is **regular** if every closed k -cell e^k , with $k > 0$, is homeomorphic to Δ^k .

Regular CW-complexes satisfy several properties which are not necessarily satisfied by nonregular CW-complexes. For instance,

- ① If $j < k$ and e^j and e^k are cells such that $e^j \cap e^k \neq \emptyset$, then $e^j \subset e^k$.
- ② If e^k and e^{k+2} are cells such that e^k is a face of e^{k+2} , then there are exactly two $(k+1)$ -cells e^{k+1} such that e^k is a proper face of e^{k+1} and e^{k+1} is a proper face of e^{k+2} , i.e. $e^k < e^{k+1} < e^{k+2}$.
- ③ The incidence number $[e^k : e^{k-1}]$ is ± 1 if $e^{k-1} < e^k$ and zero otherwise.

A regular CW-structure on S^1



For each k -cell e_σ^k in a regular CW-complex X choose a basepoint $x(e_\sigma^k)$. This determines an isomorphism

$$\bigoplus_{\sigma} (f_{\sigma})_* : \bigoplus_{\sigma} H_k(\Delta^k, \dot{\Delta}^k; G_{x(e_\sigma^k)}) \xrightarrow{\approx} H_k(X^{(k)}, X^{(k-1)}; G).$$

The definition of the induced map $(f_{\sigma})_*$ requires both a map of spaces $f_{\sigma} : (\Delta^k, \dot{\Delta}^k) \rightarrow (X^{(k)}, X^{(k-1)})$ and a homomorphism

$\gamma_* : G_{x(e_\sigma^k)} \rightarrow f_{\sigma}^*(G)$. We take the homomorphism γ_* to be the one defined by restricting the local coefficient system G to the simply connected space e_σ^k . (**This works because X is regular.**) That is, for any point $x \in \Delta^k$ there is a **unique** homotopy class of paths rel endpoints from $f_{\sigma}(x)$ to $x(e_\sigma^k)$ and hence a well-defined homomorphism $G_{x(e_\sigma^k)} \rightarrow G_{f_{\sigma}(x)}$.

Define

$$CW_k(X; G) \stackrel{\text{def}}{=} \left\{ \sum_{\sigma} g e_{\sigma}^k \middle| g \in G_{x(e_\sigma^k)} \right\} \approx H_k(X^{(k)}, X^{(k-1)}; G)$$

Steenrod's CW-boundary operator

Steenrod's cellular boundary operator with coefficients in G on a regular CW-complex X is defined to be the homomorphism

$$\partial_k : CW_k(X; G) \rightarrow CW_{k-1}(X; G)$$

given on an elementary chain ge^k by

$$\partial_k(ge^k) = \sum_{e^{k-1} < e^k} [e^k : e^{k-1}] (\gamma_{e^{k-1}e^k})_*(g) e^{k-1},$$

where $(\gamma_{e^{k-1}e^k})_* : G_{x(e^k)} \rightarrow G_{x(e^{k-1})}$ denotes the isomorphism determined by any path from $x(e^{k-1})$ to $x(e^k)$ contained in the closure of e^k . We will call the pair $(CW_*(X; G), \partial_*)$ **Steenrod's CW-chain complex with coefficients in the bundle G** .

The Twisted CW-Homology Theorem

Theorem (Twisted CW-Homology Theorem)

If X is a regular CW-complex and G is a bundle of abelian groups over X , then the singular boundary operator with coefficients in G induces Steenrod's cellular boundary operator with coefficients in G . That is, the following diagram commutes.

$$\begin{array}{ccc}
 CW_k(X; G) & \xrightarrow{\partial_k} & CW_{k-1}(X; G) \\
 \uparrow & & \downarrow \\
 H_k(X^{(k)}, X^{(k-1)}; G) & \xrightarrow{\tilde{\partial}_k} & H_{k-1}(X^{(k-1)}, X^{(k-2)}; G)
 \end{array}$$

Thus, the homology of Steenrod's CW-chain complex $(CW_(X; G), \partial_*)$ is isomorphic to the singular homology of X with coefficients in the bundle G .*

The twisted Morse-Smale-Witten chain complex

Let G be a bundle of abelian groups and (f, g) a Morse-Smale pair on a finite dimensional closed smooth manifold M . Fix orientations on the unstable manifolds, and for all $k = 0, \dots, m$ define

$$C_k(f; G) \stackrel{\text{def}}{=} \left\{ \sum_{q \in Cr_k(f)} gq \mid g \in G_q \right\} \approx \bigoplus_{q \in Cr_k(f)} G_q,$$

and $\partial_k^G : C_k(f; G) \rightarrow C_{k-1}(f; G)$ by

$$\partial_k^G(gq) = \sum_{p \in Cr_{k-1}(f)} \sum_{\nu \in \mathcal{M}(q, p)} \epsilon(\nu) \gamma_*^\nu(g)p,$$

where $\gamma^\nu : [0, 1] \rightarrow M$ is any continuous path from p to q whose image coincides with the image of $\nu \in \mathcal{M}(q, p)$ and $\epsilon(\nu) = \pm 1$ is the sign determined by the orientation on $\mathcal{M}(q, p)$.

The η -twisted Morse-Smale-Witten chain complex

Let $\eta \in \Omega_{\text{cl}}^1(M, \mathbb{R})$ be a closed 1-form and (f, g) a Morse-Smale pair on a finite dimensional closed smooth manifold M . We have

$$C_k(f; e^\eta) \approx C_k(f) \otimes \mathbb{R},$$

where $C_k(f)$ is the free abelian group generated by the critical points q of index k . Fixing orientations on the unstable manifolds of (f, g) , the homomorphism $\partial_k^\eta : C_k(f) \otimes \mathbb{R} \rightarrow C_{k-1}(f) \otimes \mathbb{R}$ is given on a critical point $q \in Cr_k(f)$ by

$$\partial_k^\eta(q) = \sum_{p \in Cr_{k-1}(f)} \sum_{\nu \in \mathcal{M}(q, p)} \epsilon(\nu) \exp \left(\int_{\mathbb{R}} \gamma_\nu^*(\eta) \right) p,$$

where $\gamma_\nu : \overline{\mathbb{R}} \rightarrow M$ is any gradient flow line from q to p parameterizing $\nu \in \mathcal{M}(q, p)$ and $\epsilon(\nu) = \pm 1$ is the sign determined by the orientation on $\mathcal{M}(q, p)$.

The constant bundle $G = \mathbb{Z}$

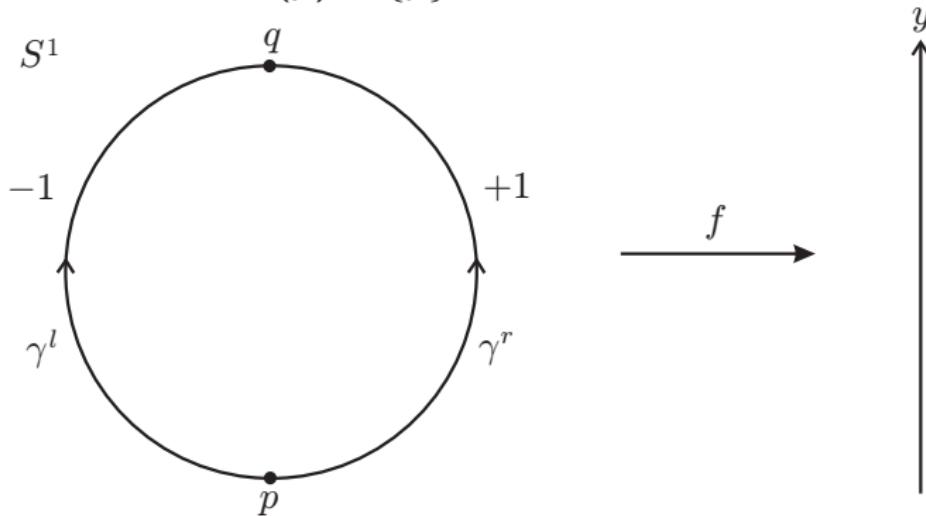
If $G = \mathbb{Z}$ is constant and $g \in \mathbb{Z}$, then

$$\begin{aligned}
 \partial_k^G(gq) &= \sum_{p \in Cr_{k-1}(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \gamma_*^\nu(g)p \\
 &= \sum_{p \in Cr_{k-1}(f)} \sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) gp \\
 &= \sum_{p \in Cr_{k-1}(f)} g \left(\sum_{\nu \in \mathcal{M}(q,p)} \epsilon(\nu) \right) p \\
 &= g \sum_{p \in Cr_{k-1}(f)} n(q,p)p \\
 &= g \partial_k(q) = \partial_k(gq).
 \end{aligned}$$

The height function on a circle

Consider the height function $f : S^1 \rightarrow \mathbb{R}$ on the unit circle

$S^1 \subset \mathbb{R}^2$ with a critical point q of index 1 and a critical point p of index 0. Orient the unstable manifold of q clockwise and the unstable manifold $W^u(p) = \{p\}$ with +1.



The (untwisted) Morse-Smale-Witten chain complex

The (untwisted) Morse-Smale-Witten chain complex of f is

$$\begin{array}{ccccccc}
 0 & \longrightarrow & C_1(f) & \xrightarrow{\partial_1} & C_0(f) & \longrightarrow & 0 \\
 & & \uparrow \approx & & \uparrow \approx & & \\
 0 & \longrightarrow & \langle q \rangle & \xrightarrow{\partial_1} & \langle p \rangle & \longrightarrow & 0
 \end{array}$$

with $\partial_1(q) = 0$ zero since the two gradient flow lines have opposite signs. So,

$$\begin{aligned}
 H_k(C_*(f), \partial_*) &\approx \mathbb{Z} \text{ if } k = 0, 1 \\
 H_k(C_*(f), \partial_*) &\approx 0 \text{ otherwise.}
 \end{aligned}$$

The η -twisted Morse-Smale-Witten chain complex

Let η be a closed 1-form on S^1 and e^η its associated flat \mathbb{R} -bundle. The η -twisted Morse-Smale-Witten boundary operator is given by

$$\partial_1^\eta(q) = \left(\exp \left(\int_1^0 (\gamma^r)^*(\eta) \right) - \exp \left(\int_1^0 (\gamma^l)^*(\eta) \right) \right) p.$$

If η is exact, then $H_*((C_*(f; e^\eta), \partial_*^\eta)) = H_*(S^1; \mathbb{R})$. However, if η is not exact, then

$$\int_1^0 (\gamma^r)^*(\eta) \neq \int_1^0 (\gamma^l)^*(\eta),$$

and $H_k((C_*(f; e^\eta), \partial_*^\eta)) \approx 0$ for all k .

The Twisted Morse Homology Theorem

Theorem (Twisted Morse Homology Theorem)

Let $f : M \rightarrow \mathbb{R}$ be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold (M, g) , and let G be a bundle of abelian groups over M . The homology of the Morse-Smale-Witten chain complex with coefficients in G is isomorphic to the singular homology of M with coefficients in G . That is,

$$H_k((C_*(f; G), \partial_*^G)) \approx H_k(M; G)$$

for all $k = 0, \dots, m$.

Proved by comparing with Steenrod's twisted CW-complex for regular CW-complexes.

Proof outline (invariance)

Theorem (Invariance Theorem)

Let (M, g) be a closed finite dimensional smooth Riemannian manifold, and let G be a bundle of abelian groups over M . Then the homology of the twisted Morse-Smale-Witten chain complex $(C_(f; G), \partial_*^G)$ is independent of the Morse-Smale pair (f, g) and depends only on the isomorphism class of the bundle of abelian groups G .*

Proved in Chapter 3 using standard continuation arguments from Floer theory. The proof relies on the smooth manifolds with corners structure on $\overline{\mathcal{M}}(q, p)$.

Proof outline (triangulations and unstable manifolds)

Theorem (Banyaga, H-, Spaeth)

On any closed finite dimensional smooth manifold M there exists a smooth Morse-Smale pair (f, g) such that the unstable manifolds coincide with a smooth triangulation of M . Hence, the unstable manifolds of (f, g) determine a regular CW-structure on M .

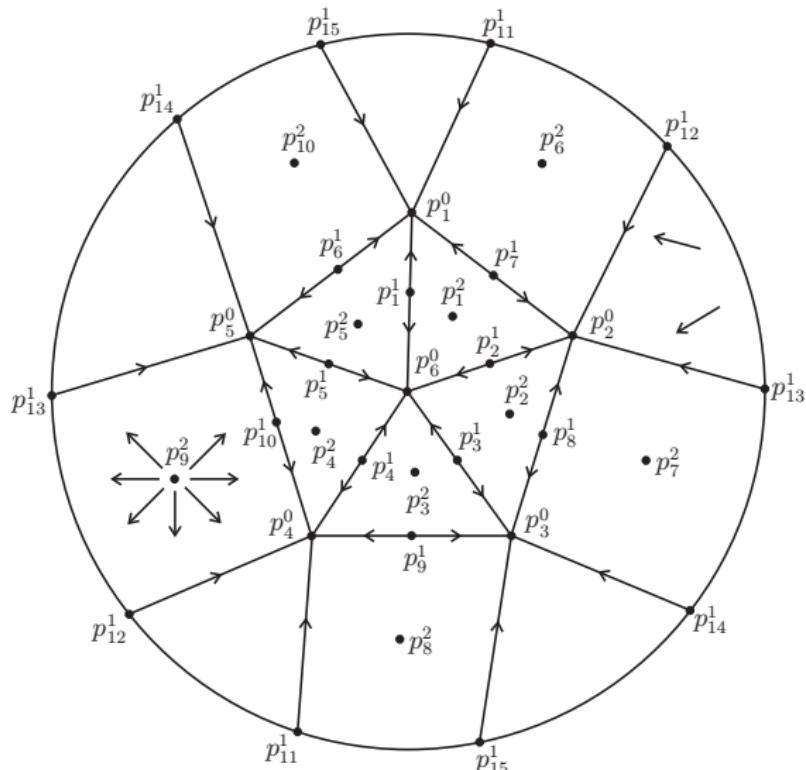
Moreover, the Riemannian metric g can be chosen such that around every critical point of f there is a Morse chart that is an isometry respect to the standard Euclidean metric on \mathbb{R}^m .

Proved in Section 4.4. The fundamental identity

$$\#M(q, p) = [e_q^k : e_p^{k-1}]$$

follows easily for the function constructed in the above theorem, and hence the Morse-Smale-Witten boundary operator coincides with Steenrod's CW-boundary operator.

A minimal triangulation of $\mathbb{R}P^2$ with ten 2-simplices



Lichnerowicz cohomology (Chapter 5)

For any k -form $\xi \in \Omega^k(M, \mathbb{R})$ define $d_\eta \xi = d\xi + \eta \wedge \xi$. It is easy to verify that $d_\eta \circ d_\eta = 0$, and hence d_η defines a cochain complex

$$\Omega^0(M, \mathbb{R}) \xrightarrow{d_\eta} \Omega^1(M, \mathbb{R}) \xrightarrow{d_\eta} \Omega^2(M, \mathbb{R}) \xrightarrow{d_\eta} \dots$$

called the **Lichnerowicz cochain complex**.

Theorem (η -Twisted Morse de Rham Theorem)

Let $f : M \rightarrow \mathbb{R}$ be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold (M, g) . For any $\eta \in \Omega^1_{cl}(M, \mathbb{R})$, the η -twisted Morse cohomology groups are isomorphic to the Lichnerowicz cohomology groups defined by $-\eta$, i.e.

$$H_k((C^*(f; e^\eta), \delta_*^\eta)) \approx H_{-\eta}^k(M)$$

for all $k = 0, \dots, m$.

Locally conformal symplectic manifolds

Theorem

Let (M, Ω) be a closed, smooth, finite dimensional LCS manifold with Lee form $\eta \in \Omega_{cl}^1(M, \mathbb{R})$, i.e. $d\Omega = -\eta \wedge \Omega$. Then the η -twisted Morse homology groups $H_*((C_*(f) \otimes \mathbb{R}, \partial_*^\eta))$ and the η -twisted Morse cohomology groups $H_*((C^*(f; e^\eta), \delta_*^\eta))$ are invariants of the conformal class of Ω .

Proved in Chapter 5.

Parallel 1-forms (Section 6.1)

Theorem (Parallel 1-Form Obstruction)

Let $f : M \rightarrow \mathbb{R}$ be a smooth Morse-Smale function on a closed finite dimensional smooth Riemannian manifold M , and assume there exists a nonzero closed 1-form η on M such that $H_k((C^*(f; e^\eta), \delta_*^\eta)) \neq 0$ for some k . Then for any nonzero closed 1-form ζ on M such that $[\zeta] = [\eta] \in H^1(M; \mathbb{R})$ the 1-form ζ is not parallel with respect to any Riemannian metric on M .

Proved in Section 6.1 using a result of León, López, Marrero, and Padrón (2003).

H-spaces (Section 6.2)

An H-space is a topological space X together with a continuous map $m : X \times X \rightarrow X$ and an element $e \in X$ such that $m(e, \cdot) : X \rightarrow X$ and $m(\cdot, e) : X \rightarrow X$ are homotopic to the identity through maps that preserve e .

Theorem (Associative H-space Obstruction)

Let (f, g) be a smooth Morse-Smale pair on a closed path connected finite dimensional smooth manifold M . If there exists a local coefficient system \mathcal{L} of rank one vector spaces on M such that

- ① \mathcal{L} is not simple, i.e. \mathcal{L} is not isomorphic to a constant bundle, and
- ② $H_k((C_*(f; \mathcal{L}), \partial_*^{\mathcal{L}})) \neq 0$ for some k ,

then M is not an associative H-space.

Proved using a result of Albers, Frauenfelder, and Oancea (2017).

Novikov homology (Section 6.3)

S.P. Novikov noted that a closed 1-form ζ on a differentiable manifold M defines a “multivalued function” S by integrating ζ over paths, and S becomes single valued on an appropriate covering space $\tilde{M} \rightarrow M$.

Problem. To construct an analogue of Morse theory for the multivalued functions S . That is, to find a relationship between the stationary points $dS = 0$ of different index and the topology of the manifold M .

Approaches using the dynamics of a flow

The generalization of the Morse-Smale-Witten chain complex to closed 1-forms that determine integral cohomology classes, i.e. to circle valued Morse functions, was carried out by A. Pajitnov (1995), and the construction of a Morse-Smale-Witten type complex using an arbitrary closed 1-form was given by D. Burghelea and S. Haller (2001) and F. Latour (2011).

These generalizations all define the boundary operator for the “Novikov complex” using the dynamics of a flow on a covering of the manifold determined by the closed 1-form and a Riemannian metric. The homology of the Novikov complex is isomorphic to the singular homology of the manifold with local coefficients in a system of rank one $\text{Nov}(\Gamma)$ -modules.

In Section 6.3 we use twisted Morse complexes to compute the Novikov numbers of S^1 , T^2 , K^2 , and a surface of genus two.

References

- 1) Abouzaid, M., *Symplectic cohomology and Viterbo's theorem*, In: Free Loop Spaces in Geometry and Topology, pp. 271–485 (2015). MR3444367
- 2) Albers, P., Frauenfelder, U., Oancea, A., *Local systems on the free loop space and finiteness of the Hofer-Zehnder capacity*. Math. Ann. 367(3–4), 1403–1428 (2017). MR3623229
- 3) Audin, M., Damian, M., **Morse theory and Floer homology**, Universitext, Springer, London; EDP Sciences, Les Ulis, 2014. Translated from the 2010 French original by Reinie Erné. MR3155456
- 4) Bismut, J.M. and Zhang, W., **An extension of a theorem by Cheeger and Müller**. With an appendix by François Laudenbach. Astérisque 205, 7–218 (1992). MR93j:58138

References

- 5) Burghelea, D. and Haller, S., *On the topology and analysis of a closed one form. I (Novikov's theory revisited)*, Essays on geometry and related topics, Vol. 1, 2, 2001, 133–175. MR1929325 (2003h:58030)
- 6) Dan Burghelea, Leonid Friedlander, and Thomas Kappeler, *On the space of trajectories of a generic gradient like vector field*, An. Univ. Vest Timiș. Ser. Mat.-Inform. **48** (2010), no. 1-2, 45–126. MR2849328 (2012j:58020)
- 7) de León, M., López, B., Marrero, J.C., Padrón, E., *On the computation of the Lichnerowicz-Jacobi cohomology*. J. Geom. Phys. **44**(4), 507–522 (2003). MR1943175 (2003m:53145)
- 8) Peter Kronheimer and Tomasz Mrowka, **Monopoles and three-manifolds**, New Mathematical Monographs, 10, Cambridge University Press, Cambridge, 2007. MR2388043

References

- 9) Latour, F., *Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham*. Inst. Hautes Études Sci. Publ. Math. 80, 135–194 (1994) (1995). MR1320607
- 10) Pazhitnov, A.V., On the Novikov complex for rational Morse forms. Ann. Fac. Sci. Toulouse Math. (6) 4(2), 297–338 (1995). MR1344724
- 11) Qin, L., *On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds*, J. Topol. Anal. 2 (2010), no. 4, 469–526. MR 2748215 (2012d:58014)
- 11) Qin, L., *An application of topological equivalence to Morse theory*, J. Fixed Point Theory Appl. 23(1), Paper No. 10, 38 (2021). MR4198387
- 12) Steenrod, N., **The Topology of Fibre Bundles**, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258 (12,522b)